Знаете ли вы физику? - Страница 11
Рекорд легкости побивает, как видим, литий[6] – металл, который легче многих пород дерева и плавает в керосине, погружаясь до половины. Он в сорок раз легче самого тяжелого металла – осмия.
Рис. 58. Призмы равного веса из некоторых легких металлов
Из сплавов, применяемых в современной промышленности, выделяются своей легкостью следующие (французские инженеры, занимающие одно из первых мест в производстве высококачественных легких сплавов, называют «легкими» все сплавы с плотностью меньше 3):
1) дюралюминий и кольчугалюминий С сплавы алюминия с небольшим количеством меди и магния; при плотности 2,6 они втрое легче железа, будучи прочнее его в полтора раза;
2) дюрбериллий – сплав бериллия с медью и никелем; он легче дюралюминия на 25 % и прочнее на 40 %;
3) электрон (не смешивать с элементарным количеством отрицательного электричества)[7] – сплав магния, алюминия и др.; почти не уступая в прочности дюралюминию, электрон легче его на 30 % (плотность 1,84).
Мы не останавливаемся здесь на ряде таких легких алюминиевых сплавов, как лоталь, силумин, склерон, конструкталь, магналий (предшественник электрона), употребляемых на Западе.
6. Вещество наибольшей плотности
Осмий, иридий, платина– вещества, которые принято считать самыми плотными – оказываются ничтожно плотными по сравнению с веществом некоторых звезд. Величайшей плотностью отличается материя так называемой звезды ван-Манэна, принадлежащей к зодиакальному созвездию Рыб. В 1 куб. см этой звезды (по геометрическим размерам не превышающей нашу Землю) заключается в среднем около 400 кг массы. Следовательно, вещество это в 400 000 раз плотнее воды и приблизительно в 20 000 раз плотнее платины. Мельчайшая дробинка из такого вещества (№ 12, диаметр 1,25 мм) весила бы на поверхности Земли 400 г С целый фунт! Вес той же дробинки на поверхности самой звезды ван-Манэна поистине чудовищен: 30 тонн!
Рис. 59. Немного вещества звезды ван – Манэна, объемом в четверть спичечного коробка, могло бы уравновесить три десятка взрослых людей
Рис. 60. Опрокидывание Эдисоновой стены
7. На необитаемом острове
«Растут ли хоть деревья на этом тропическом острове?» – спрашивает автор немецкой книжки, посвящен – ной разбору Эдисоновой викторины. Вопрос праздный, потому что для опрокидывания скалы никаких деревьев не понадобится: это можно сделать буквально голыми руками. Рассчитаем, какова толщина скалы, подозрительно не упомянутая в задаче, и дело сразу разъяснится.
При общей массе скалы 3 т и при плотности гранита 3, соображаем, что объем скалы равен 1 м3. А так как дли – на скалы 30 м (100 футов), высота около 5 м (15 футов), то толщина ее
1: (30 · 5) ≈ 0,007 м,
т. е. 7 мм. На острове возвышалась тонкая стена, всего в 7 мм толщины.
Чтобы подобную стену опрокинуть (если только она не врылась глубоко в почву), достаточно упереться в нее руками или плечом. Вычислим величину нужной для 78 этого силы, обозначив ее через х; на рис. 60 она изображена вектором Ах. Точка А приложения этой силы находится на высоте плеч человека (1,5 м). Сила стремится повернуть стену вокруг оси О. Момент этой силы равен
Мом. х = 1,5х.
Опрокидывающему усилию противодействует вес скалы Р, приложенный в центре ее тяжести С и стремящийся отвести поворачиваемую стену в прежнее положение. Момент силы веса относительно той же оси О равен
Мом. Р = Р · т = 3000 · 0,0035 = 10,5.
Величина силы х определяется из уравнения:
1,5х = 10,5,
откуда х = 7 кг.
Значит, напирая на стену с силою всего 7 кг, человек опрокинет скалу.
Невероятно, чтобы подобная каменная стена вообще могла удержаться в отвесном положении: самый слабый, неощутимый для нас ветерок должен был бы ее опрокинуть. Легко рассчитать указанным сейчас приемом, что для опрокидывания этой стены ветром (который можно рассматривать как силу, приложенную на половине высоты стены) достаточно общее давление ветра всего в 11/2 кг/кв. м. Между тем даже так называемый «легкий» ветер с силою давления 1 кг на 1 кв. м оказывал бы на стену давление в 150 кг.
8. Вес паутинной нити
Не сделав расчета, трудно дать правдоподобный ответ на этот вопрос. Расчет несложен: при диаметре паутинной нити 0,0005 см и плотности = 1 (г/см2), километр ее должен весить
а нить в 400 000 км (округленное расстояние от Земли до Луны) —
0,02 · 400 000 = 8 кг.
Такой груз можно удержать в руках.
9. Модель Эйфелевой башни
9. Модель Эйфелевой башни Задача эта – скорее геометрическая, чем физическая, – представляет интерес главным образом для физики, так как в физике приходится нередко сопоставлять массы геометрически подобных тел. В данном случае вопрос сводится к определению отношения массы двух подобных тел, линейные размеры одного из которых в 1000 раз меньше, чем другого. Грубой ошибкой было бы думать, что уменьшенная в такой пропорции модель Эйфелевой башни весит не 9000 т, а 9 т, т. е. всего в тысячу раз меньше. Объемы, а следовательно, и массы геометрически подобных тел относятся, как кубы их линейных размеров. Значит, модель башни должна иметь массу меньше натуры в 10003, т. е. в миллиард раз:
9 000 000 000: 1 000 000 000 = 9 г,
– масса, крайне ничтожная для железного изделия вы – сотою 30 см. Это будет казаться, однако, не столь странным, если сообразим, какой толщины оказались бы брусья нашей модели: в тысячу раз тоньше натуры, они должны быть тонки, как нитки: модель окажется словно сотканной из тончайшей проволоки[8], так что удивляться ее незначительной массе не приходится.
10. Тысяча атмосфер под пальцем
Для многих будет, вероятно, полной неожиданностью утверждение, что, втыкая пальцем острую иглу или булавку в ткань, мы производим давление порядка 1000 ат. В этом нетрудно, однако, убедиться. Измерив – например, с помощью весов для писем – силу, с какой палец напирает на втыкаемую булавку, получим около 300 г, или 0,3 кг. Диаметр кружка, на который давление это распространяется (острие булавки), – примерно 0,1 мм, или 0,01 см; площадь такого кружка равна около
3 · 0,012 = 0,0003 см2.
Отсюда давление на 1 cм2 составляет
0,3: 0,0003 = 1000 кг.
Так как техническая атмосфера равна давлению 1 кг/см2, то, втыкая булавку, мы производим давление в 1000 технических атмосфер. Рабочее давление пара в цилиндре паровой машины в сотню раз меньше.
Портной, работая иглой, поминутно пользуется давлением в сотни атмосфер, сам не подозревая, что развивает пальцами руки такое чудовищное давление. Не задумывается над этим и парикмахер, срезая волосы ост – рой бритвой. Бритва напирает на волос с силою, правда, 1 70–тонные брусья Эйфелевой башни заменились бы в модели проволочками, весящими 0,07 г. 81 всего нескольких граммов; но острие ее имеет в толщину не более 0,0001 cм, диаметр же волоса менее 0,01 см; площадь, на которую распространяется давление бритвы, равна в данном случае величине порядка
0,0001 · 0,01 = 0,000 001 cм2.
Удельное давление силы в 1 г на такую ничтожную площадь составляет
1: 0,000 001 = 1 000 000 г/см2 = 1000 кг/см2,