Заклятие Фавна - Страница 53

Изменить размер шрифта:

Если открыть последний энциклопедический словарь, то можно прочесть: «Солнце… раскаленный плазменный шар… Химический состав, определенный из анализа солнечного спектра: водород — около 90%, гелий — 10%, остальные элементы — менее 0, 1% (по числу атомов)». А что такое «плазма»?

Если, услыхав слово «плазма», вы подумаете о чем-то исключительном, то непременно ошибетесь. В состоянии плазмы находится подавляющая часть вещества Вселенной. Тут и звезды, и галактические туманности, межзвездная среда и даже внешняя оболочка нашей собственной земной атмосферы. Не говоря уж о том, что Земля просто купается в плазме в виде солнечного ветра. Правда, искать природную плазму на поверхности нашей планеты — занятие безнадежное. Ее не существует. Но исследователи довольно давно научились получать ее искусственно в лабораториях, свое же название она получила совсем недавно.

Все в тех же 20-х годах нашего века два американских физика Ленгмюр и Tонкс, изучая газовый разряд, назвали его греческим словом «plasma», что означало — ионизованный электрически нейтральный газ, содержащий равное количество положительных и отрицательных зарядов. Этот газ-плазма оказался настолько отличающимся от всех известных физикам состояний вещества, что стал самостоятельным объектом исследования.

Давайте попробуем каким-нибудь способом постепенно разогревать кусок обычного, вполне земного вещества, хоть железку. Сначала она раскалится, засветится. Затем связи в ней ослабнут, и она расплавится. Потом жидкость испарится и перейдет в газ. При дальнейшем нагреве молекулы газа не выдержат и разорвутся на атомы. Еще дальше — газ станет атомарным. А там начнут сдаваться и атомы. Электроны будут отрываться от ядер, и газ начнет переходить в плазму.

Примерно к температуре десять миллионов градусов плазма окажется полностью ионизованной. То есть вещество будет состоять из «голых» ободранных ядер и свободных электронов, которые мечутся в разные стороны, стремясь во что бы то ни стало сбросить возбуждение, отдать сообщенную энергию и обрести, образно говоря, покой.

При ста миллионах градусов частицы плазмы обретают такую скорость, что при встречах ядра могут начать разрушатьея. Здесь мы подошли к границе ядерных превращений.

При миллиарде градусов вещество будет состоять уже только из протонов и электронов. Ядра распадутся. А при температурах более десяти триллионов (10 E13) градусов элементарные частицы получат возможность превращаться одна в другую.

Правда, представить себе все эти градусы довольно трудно. Нужно быть физиком-теоретиком.

Чем ближе знакомились физики с плазмой, тем больше убеждались в ее вздорном характере. Посудите сами: мы говорам, что плазма нейтральна. Но шустрые электроны куда более подвижны, чем массивные ионы, и потому они первыми, норовят удрать из дружного коллектива. Образуются нестабильные электрические поля. Под их влиянием частицы меняют свои направления, путают расчеты, делают поведение сгустка плазмы труднопредсказуемым. Плазма изо всех сил стремится расшириться, коснуться стенок камеры, отдать энергию и… погибнуть.

Просто какая-то страсть к самоубийству. И чем выше температура плазмы, тем она норовистее. А при миллионах градусов, необходимых термоядерщикам, она становится просто бешеной.

Когда-то считали, что в недрах нашего светила горят запасы серы, каменного угля и прочих горючих ископаемых. Однако проверили поточнее, прикинули, оказалось, что будь Солнце даже просто из лучшего донецкого антрацита, его хватило бы лишь на несколько тысячелетий. Этого было явно мало. Следовало поискать другой, более долговечный источник. И он нашелся…

Если представить себе зарождающуюся звезду облаком холодной плазмы, сжимающейся под действием сил притяжения, то постепенно ее температура станет подниматься. Сначала немного нагреются недра, а там, глядишь, и весь шар покраснеет, засветится и засверкает. Превратится сжимающийся плазменный шар в пылающую звезду…

Впрочем, не надо, как говорится, эмоций! Посчитаем, прикинем… Если бы Солнце под действием собственной силы тяжести сжималось со скоростью 30 метров в год, оно бы «просветило» лет этак миллионов тридцать. Опять мало! По новым данным науки, Солнечная система существует, по крайней мере, четыре с половиной миллиарда лет. Миллиарда! Представляете?

Долго, очень долго источник солнечной энергии оставался для ученых загадкой. А потом в лабораториях физиков началось его постепенное разгадывание. В 1896 году французский физик А. Беккерель открыл радиоактивность. Помните — так мы называем самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов. Потом А. Эйнштейн установил зависимость массы и энергии. Это позволило английскому астроному и иностранному члену-корреспонденту Академии наук СССР А. Эддингорну выдвинуть идею прямого перехода массы Солнца в энергию. Правда, как это могло происходить, никто не знал.

Примерно в ту же пору неистовый и громоподобный Э. Резерфорд наблюдал первые искусственные превращения ядер. На лабораторной установке ядра атомов азота при бомбардировке их ядрами гелия иногда вдруг глотали эти «микробомбы» и превращались в ядра атомов кислорода, излучая лишний протон. Это было чудесно и совершенно непонятно. Картина стала проясняться, когда ученик Резерфорда Дж. Чедвик открыл нейтрон, а советский и немецкий физики Д. Иваненко и В. Гейзенберг независимо друг от друга построили модель атомного ядра из протонов в нейтронов. В 1939 году немецкий физик X. Бете, бежавший от фашистов сначала в Англию, а затем в США, теоретически показал, что в солнечных недрах должны существовать, по крайней мере, два вида реакций превращения водорода в гелий. Первая и основная — слияние двух протонов и образование тяжелого изотопа водорода — дейтерия, с излучением позитрона и нейтрино. И затем переход дейтерия в гелий с образованием новых свободных протонов. При этом количество высвобождающейся энергии оказывалось примерно в миллион раз больше, чем при химической реакции горения. Вторым типом реакции был углеродно-азотный цикл, который шел при более высоких температурах, очевидно, в самом солнечном ядре.

Прекрасно! Отныне, казалось, тайна Солнца разгадана. Ядерные реакции обеспечивали нашему светилу десять миллиардов лет жизни, что вполне устраивало физиков. Так что можно было успокоиться. Кстати, а что будет через оставшиеся пять миллиардов лет? Ядро Солнца к тому времени сожмется до такой степени, что температура и плотность в нем позволят ядрам гелия объединяться и образовывать углеродные ядра. Солнечная оболочка при этом распухнет до орбиты Венеры. И наше светило превратится в красного гиганта. На Земле к этому времени станет, увы, слишком жарко для жизни. Но до этого катастрофического периода время еще есть.

Как же работает Солнце? Во-первых, «ядерный котел» нашего светила занимает не так уж много места — примерно 2 процента объема в центре. Но в нем сосредоточено 50 процентов всей массы. Каждую секунду его топка потребляет около 5 миллионов тонн ядерного горючего, обеспечивая выход 4, 5 E33 эрг энергии. Много это или мало? Судите сами: Земля получает едва ли стомиллионную долю. И этого оказывается достаточно, чтобы обеспечить нашу жизнь!

Я не стану в деталях расписывать реакции внутри Солнца. Заинтересовавшийся сам их легко отыщет в Учебнике (например, Мартынов Д.Я. Курс общей астрофизики. М., 1971, с. 221-222). Скажу только, что ядра гелия чуть-чуть легче, чем сумма слившихся в них протонов. Этот-то крошечный избыток массы и превращается в энергию сначала в виде жестких гамма-квантов и нейтрино, Нейтрино тут же удирают, из Солнца, а гамма-кванты, сильно взаимодействуя с веществом, пробираются к поверхности и в конце концов превращаются в кванты оптического излучения. Они-то и греют, они-то и светят нам с вами. А теперь подведем предварительные итоги:

1. Сколько состояний вещества мы знаем?

Три обычных: твердое, жидкое, газообразное; и четвертое — плазма.

2. Что такое плазма?

Ионизованный газ, состоящий из «ободранных» атомных ядер и электронов.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com