Релейная защита в распределительных электрических сетях - Страница 5

Ознакомительная версия. Доступно 6 страниц из 30.
Изменить размер шрифта:

2.2.2. Неселективная токовая отсечка без выдержки времени

Неселективная токовая отсечка без выдержки времени применяется, когда по условиям обеспечения устойчивой работы энергосистемы или обеспечения термической устойчивости защищаемого оборудования требуется мгновенное отключение всех или части поврежденных элементов [4]. Исправить неселективное действие токовой отсечки при КЗ на смежных присоединениях можно с помощью устройств автоматического повторного включения (АПВ) или автоматического включения резервного источника питания (АВР).

Устройство АПВ (рис. 2.6) устанавливается на линии W1 и действует на выключатель Q1.

Если КЗ произошло на линии W2 в общей зоне lОБЩ действия селективной отсечки ТО2 и неселективной отсечки НО1 (точка К2), обе отсечки сработают одновременно. В результате обе линии W1 и W2 оказываются отключенными своими выключателями. После отключения линии W1 устройство АПВ, обеспечив определенную выдержку времени, подаст сигнал на повторное включение выключателя Q1. Линия W1 вновь включается, и питание подстанции ПС2 восстанавливается. Поврежденная линия W2 остается в отключенном состоянии.

Если в исходном состоянии электрической сети КЗ произошло вне общей зоны действия защит lОБЩ, но в зоне действия lTO2 токовой отсечки ТО2 (точка К3), то под действием этой защиты будет быстро отключена только линия W2. Неселективная отсечка НО1 действовать не должна, и линия W1 остается во включенном состоянии.

Релейная защита в распределительных электрических сетях - i_030.png

При КЗ на линии W1 (точка К1) под действием неселективной отсечки НО1 будет отключена линия W1. Устройство АПВ повторно включит линию, и, если КЗ оказалось устойчивым (не ликвидировалось за время действия АПВ), неселективная отсечка НО1 вновь отключит линию W1. Количество включений линии W1 (обычно одно) ограничивается устройством АПВ.

Ток срабатывания неселективной токовой отсечки выбирается по условию ее надежного срабатывания в тех зонах, где трехфазные КЗ вызывают снижение напряжения до значений, при которых нарушается устойчивая работа энергосистемы [5]:

Релейная защита в распределительных электрических сетях - i_031.png

где UC MIN — междуфазное напряжение питающей энергосистемы в минимальном режиме ее работы, которое можно принять равным 0,9–0,95 номинального;

ZC MIN — сопротивление энергосистемы в минимальном режиме работы до места установки неселективной отсечки; kЗ — коэффициент запаса, kЗ = 1,1–1,2;

k0 — коэффициент, учитывающий допустимое снижение напряжения при трехфазных КЗ; в приближенных расчетах для обеспечения динамической стойкости синхронных генераторов k0 ≥ 1,5, синхронных электродвигателей — k0 ≥ 1,0 [4, 5].

Кроме этого, необходимо, чтобы при КЗ в общей зоне действия отсечек на линии W2 собственное время срабатывания отсечки ТО2 не превышало время срабатывания неселективной отсечки НО1.

2.3. Максимальные токовые защиты

Максимальные токовые защиты (МТЗ) — это токовые защиты максимального типа, селективность действия которых обеспечивается выбором различных выдержек времени срабатывания.

Как правило, МТЗ используются в электрических сетях с односторонним питанием. Они устанавливаются в начале каждого контролируемого объекта со стороны источника питания (рис. 2.7).

Выдержки времени срабатывания защит должны нарастать по мере приближения к источнику питания: tС31 > tC32 > tC33> tC3H4.

При КЗ на линии W3 (например, в точке КЗ) токи в линиях от источника до точки КЗ увеличатся и все три обтекаемые током КЗ защиты MT31—MT33 могут начать действовать. Среди перечисленных защит МТЗЗ имеет наименьшую выдержку времени и поэтому срабатывает первой, отключая только поврежденную линию W3. Остальные защиты вернутся в исходное состояние, так и не успев сработать.

Релейная защита в распределительных электрических сетях - i_032.png

При КЗ на линии W2 (в точке К2) током КЗ обтекаются защиты МТЗ1 и МТЗ2. Из них меньшей выдержкой времени обладает МТЗ2. Именно она должна сработать первой и отключить поврежденную линию W2.

При КЗ на линии W1 должна сработать защита МТЗ1.

2.3.1. Выбор уставок МТЗ

Ток срабатывания МТЗ выбирается исходя из следующих условий.

Во-первых, ток срабатывания должен быть больше максимального рабочего тока, чтобы защита не действовала при нормальной работе системы:

IC3 MAX > IАБ МАХ.

Во-вторых, ток возврата защиты должен быть больше тока самозапуска в послеаварийном режиме работы системы, чтобы защита возвращалась в исходное положение после селективного отключения поврежденного оборудования другой защитой:

IВЗ > IСЗП.

Так, при КЗ в начале линии W2 (рис. 2.8) токи в местах установки защит МТЗ1 и МТЗ2 увеличиваются, токовые реле этих защит срабатывают и реле времени начинают отсчет установленных на них выдержек времени. Одновременно снижается напряжение на шинах подстанции ПС2 и двигатели М, также питающиеся от шин этой подстанции, затормаживаются. Часть из них при этом отключается, другая часть в соответствии с технологическими требованиями остается подключенной к сети. После отключения линии W2 защитой МТЗ2 начинается процесс самозапуска этих двигателей, при котором ток в месте установки МТЗ1 равен току самозапуска электродвигателей. В этих условиях необходимо, чтобы МТЗ1 все же вернулась в исходное состояние, прервав отсчет времени.

Релейная защита в распределительных электрических сетях - i_033.png

Учитывая, что ток срабатывания защиты и ток ее возврата связаны коэффициентом возврата (kв = I /IС), а также используя коэффициент запаса kЗ, второе условие можно переписать в виде:

Релейная защита в распределительных электрических сетях - i_034.png

Для реле РТ-40, РТ-80, РТ-90 kЗ = 1,1–1,2, kВ = 0,8–0,85 [4].

Если максимальное значение тока самозапуска неизвестно, его можно определить приближенно на основании коэффициента самозапуска, показывающего, во сколько раз ток самозапуска больше максимального рабочего тока. Тогда:

Релейная защита в распределительных электрических сетях - i_035.png

Здесь IСЗ и kСЗП — соответственно ток самозапуска электродвигателей в месте установки защиты и коэффициент самозапуска.

Выдержки времени срабатывания МТЗ при каскадном соединении линий должны возрастать по мере приближения к источнику питания (см. рис. 2.7):

Релейная защита в распределительных электрических сетях - i_036.png

где tСЗ H4 — время срабатывания собственной защиты нагрузки;

Δ t — ступень селективности; при использовании электромеханических реле времени Δ t = 0,4–0,6 с.

2.3.2. Схемы МТЗ

Полная звезда (трехфазная трехрелейная схема, рис. 2.9; kCX = 1) применяется редко, так как в сетях 6-35 кВ при двойных замыканиях на землю она может приводить к неселективному отключению поврежденных линий. Чувствительность такой защиты, установленной на трансформаторах 110 кВ и выше, необходимо искусственно снижать, не допуская действия защиты при внешних однофазных КЗ. В сетях 110 кВ и выше обычно используют дистанционную защиту [5].

Неполная звезда (двухфазная двухрелейная или трехрелейная схема, рис. 2.10) используется для защиты в электрических сетях 6-35 кВ, то есть в сетях с изолированной или компенсированной нейтралью, где не может быть однофазных КЗ. Для уменьшения вероятности неселективных отключений при двойных замыканиях на землю ТТ во всей сети устанавливают на одноименных фазах (обычно А и С). На трансформаторах со схемами соединения обмоток «звезда/треугольник» (Y/Δ) и «треугольник/звезда» (Δ/Y), а также на линиях, питающих такие трансформаторы, следует использовать трехрелейную схему [5]: при двухфазном КЗ на стороне низшего напряжения (НН) трансформатора ток КЗ в одной из фаз на стороне высшего напряжения (ВН) будет в два раза выше, чем в двух других. В одном из трех случаев двухфазных КЗ этой фазой будет являться фаза B, не охваченная защитой, и чувствительность защиты снизится в два раза. Для повышения чувствительности в этом случае в обратный провод двухфазной схемы следует включить дополнительное реле KA3 (показано пунктиром на рис. 2.10).

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com