Журнал "Компьютерра" №725 - Страница 14
Важной характеристикой телескопа, конечно, является разрешающая способность. Какие объекты Вселенной можно рассматривать при помощи УТР-2?
- Давайте определимся с термином "рассматривать". Звезды, пульсары и другие звездоподобные объекты при наблюдении в любой инструмент выглядят точками. Их поверхность или диск увидеть невозможно, однако принять и зафиксировать их излучение в радиодиапазоне наблюдения УТР, разумеется, может. И здесь удается обнаруживать и регистрировать большое число довольно экзотических явлений: например, импульсное, а в некоторых случаях - континуальное декаметровое излучение пульсаров, в том числе отдельные импульсы (вплоть до так называемых гигантских импульсов), обусловленные не до конца еще понятыми процессами во внешней магнитосфере пульсаров.
Удалось, в частности, обнаружить новые источники излучения, ненаблюдаемые на высоких частотах из-за больших значений их спектральных индексов.
Совсем другое дело - большие, протяженные объекты: галактики, остатки взрывов сверхновых звезд, галактические гало, облака межзвездной пыли и ионизированного газа… Здесь в ряде случаев можно строить так называемые карты интенсивности - своего рода "изображение" объекта в радиодиапазоне электромагнитных волн.
Кстати говоря, огромное количество объектов, которыми активно интересуются сегодня астрофизики, не требуют сверхвысоких параметров углового разрешения радиотелескопа. Что это за объекты? Например, ближайшая к нам звезда - наше Солнце. Наблюдение Солнца в радиодиапазоне позволило обнаружить неизвестные ранее тонкие частотно-временные структуры и виды спорадического радиоизлучения: так называемые всплески II, III и IV типов, дрейфующие пары, спайки, S-, V-, J-всплески, дающие новую информацию о солнечной короне и процессах в ней. Очень много интересного удалось узнать, наблюдая радиоизлучение Юпитера…
Построение карты нетеплового фонового радиоизлучения нашей Галактики в диапазоне 10–25 МГц с наивысшей для декаметрового диапазона чувствительностью и разрешающей способностью позволило прояснить динамику эволюции галактических структур, в том числе впервые "увидеть" гигантскую внешнюю структуру соседней галактики (туманность Андромеды) и нескольких далеких скоплений галактик - так называемое гало, абсолютно недоступное другим видам наблюдений, кроме низкочастотных радиоастрономических.
Интереснейшее явление, которое было обнаружено и активно исследуется при помощи УТР-2, - низкочастотные радиорекомбинационные линии (РРЛ) поглощения атомов углерода в межзвездной среде. Зафиксировано существование в глубоком космосе атомов углерода в рекордно высоких состояниях, вплоть до значений главных квантовых чисел порядка 1000 (что соответствует Боровскому диаметру атома порядка 0,1 мм!).
Если бы наблюдатель находился в облаке с таким веществом, он бы смог с легкостью различить отдельные атомы, как различаем мы толщину страниц в книге или журнале (также примерно 0,1 мм). На возникающий вопрос о максимальном количестве уровней в атоме углерода теоретические работы дают верхнюю оценку для главного квантового числа (номера орбиты) порядка 1600 (физический размер ~ 0.3 мм).
Вместе с тем исследования таких экзотических объектов сталкиваются с трудностями, связанными в первую очередь с большим уровнем помех и малой интенсивностью исследуемого сигнала, поэтому наблюдения, связанные с обнаружением РРЛ при помощи радиотелескопа декаметрового диапазона (каким является УТР-2), длятся от нескольких десятков до сотен часов.
Антенное поле - в данном контексте это действительно поле - участок земли, специально выделенный для размещения антенны телескопа УТР-2, выполненной по принципу антенной решетки.
Антенная решетка - так называется совокупность элементов-антенн (или вибраторов, которые могут быть как излучающие, так и работающие на прием сигнала), входящих в единую систему антенны радиотелескопа и расположенных в регулярном порядке. Обычно элементы антенных решеток располагаются в узлах прямоугольной сетки (так называемая "классическая решетка", но последние исследования показали, что более сложное пространственное расположение элементов антенной решетки позволяет достичь существенно лучших характеристик радиотелескопа.
Плечо антенной решетки. Антенна радиотелескопа УТР-2, если не нее посмотреть с высоты птичьего полета, имеет форму буквы "Т". Соответственно, вертикальная и горизонтальная "перекладины" буквы для удобства названы "плечами" антенной решетки.
Линия задержки - очень важный элемент антенного хозяйства любого радиоинтерферометра или радиотелескопа, использующего принцип антенной решетки. Линия задержки, будучи включена в канал прохождения сигнала от элемента антенны до приемника, действительно задерживает его распространение, создавая фазовый сдвиг между сигналами, приходящими с разных элементов решетки. В результате суммирования на входе приемника всех сигналов с различными фазами (обеспечиваемыми линиями задержки) удается реализовать так называемую диаграмму направленности антенной решетки.
Вы говорили, что существует еще методика исследования космического пространства с использованием радиоизлучения далеких объектов в качестве "подсветки"…
- Многие объекты Вселенной не излучают. Их нельзя "видеть" так, как вы "видим" радиогалактики, пульсары… Тем не менее существует способ наблюдения таких объектов (например, солнечного ветра, плазменных и газовых облаков в межзвездном пространстве и пр.), основанный на "просвечивании" их радиоизлучением мощных внешних галактических и даже внегалактических источников.
В такого рода исследованиях УТР-2 активно участвует уже много лет. Так, для исследования солнечного ветра была разработана методика измерения межпланетных мерцаний и рассеяния радиоизлучения далеких компактных источников, которая дала возможность диагностировать турбулентную плазму до расстояний вплоть до орбиты Земли и даже дальше.