Зеркальный мир - Страница 41
Теперь нам следует вспомнить, что окружающие нас материальные тела состоят главным образом из «пустот».
Начнем с атомов. Характерный размер этих образований, которые можно представить себе как маленькие шарики, около 10-8см. Вся мизерность этой величины гораздо ощутимее, когда она представлена дробью: единицей, деленной на единицу с восемью нулями.
Каждая координатная система с правой ориентировкой может быть путем отражения преобразована в левостороннюю
Общеизвестно, что атом состоит из положительно заряженного, ядра и электронной оболочки. Ядро имеет в поперечнике 10-12см. Это значит, что на отрезке, равном диаметру атома (10-8см), можно расположить в ряд 10 тыс. атомных ядер (10-12см). Следовательно, атом почти пустой и ядро составляет лишь ничтожную долю его объема.
Если мысленно спрессовать атомы до размеров их ядер, то в одной двадцатикопеечной монете их вместится столько, что ее масса составит 50 млн. т.
Итак, диаметр атома измеряется величиной порядка 10-8см. Поразмыслим-ка над тем, что это означает. На отрезке длиной 1 см можно уложить более 100 млн. атомов. А кубик с ребром в 1 см содержит около 1024 атомов. Сравните: население Советского Союза составляет несколько более 2,62 • 108 (262 млн.) человек. А всего на земном шаре сейчас проживает свыше 4,5 • 109, то есть порядка 4,5 млрд. человек. Но понадобился бы триллион миров с населением в один триллион каждый, чтобы получить число, равное количеству атомов в 1 см3.
Цилиндр без особых отличительных признаков при переходе в противоположно ориентированную систему координат меняет лишь направление своего вращения (сверху). Конус, кроме того, меняет и свое положение (снизу)
И тем не менее атомы - еще не последний предел деления материи, это отнюдь не те простые, неделимые шарики, какими их представляли себе наши отцы и деды. Атомы сами состоят из более мелких единиц - таких, как протон, нейтрон и электрон. Кстати говоря, эти составные частицы атомов вполне могут существовать - путь лишь ограниченное время - и самостоятельно, вне атома.
Помимо трех уже названных физики нашли свыше 109 других частиц. Столь большое количество элементарных частиц наводит на мысль, что они не являются конечным звеном в природе и что широчайшее разнообразие форм создано из немногих составляющих. Поэтому физики надеются найти такой принцип упорядочения, который даст простое объяснение нынешней неразберихе частиц и античастиц.
Однако мы еще не рассказали, каким образом можно было бы обнаружить античастицу, если она мгновенно аннигилирует при столкновении с частицами. Представим себе сосновое редколесье, где дерево от дерева отстоит на 20 м. Охотник, выстрелив наудачу в таком лесу, может иногда попасть в ствол одного из ближайших деревьев, но в каких-то случаях его пуля пролетит по лесу довольно далеко, не зацепив ни единой сосны. Для элементарной частицы из космоса воздушная оболочка нашей Земли и сама наша планета - то же самое, что редколесье для пули. Но если античастицы так невообразимо малы, как же физикам удается их обнаружить? Разумеется, ученые их не могут видеть, как не видят они и электрического тока. Они лишь наблюдают за их действием, подобно тому как распознают электрический ток по вызванным им эффектам (отклонение магнитной стрелки, накаливание проволоки и т. д.). Примером тому может быть инверсионный (конденсационный) след, оставляемый турбореактивным самолетом, - шлейф, который тянется за ним на 20- или 30-километровой высоте. И хотя мы часто самого самолета не различаем, но узнаем о его присутствии по производимому им действию. Причем мы точно знаем, что это именно турбореактивный самолет, а не самолет с поршневым двигателем.
Именно принцип конденсационного следа используют физики-атомщики. Частицы высоких энергий, пролетая через газ, способный конденсироваться, то есть образовывать капельки, оставляют за собой инверсионный след. Когда заряженная частица пролетает через переохлажденный водяной пар (пар воды в отличие от «тумана» прозрачен!), происходит конденсация пара и вдоль траектории движения частицы образуется след из капелек воды - трек. Эти следы иногда имеют резкие изломы. Каждая такая точка излома траектории фиксирует соударение двух частиц. При этом уже на основе законов отражения в сочетаний с законами сохранения энергии и импульса, с помощью измерения ширины трека и т. п. удается в какой-то мере оценить скорость, массу, заряд и другие параметры частицы. Подчас из такой точки перелома выходят новые треки. Это значит, что при столкновении двух частиц возникли новые частицы. Именно такой случай, когда было отмечено появление пяти новых траекторий, и удалось наблюдать впервые в 1933 г.
Для случая столкновения протона с антипротоном теоретики предсказали рождение пяти новых элементарных частиц.
Между тем на больших ускорителях заряженных частиц были получены самые разнообразные античастицы. Они всегда очень недолговечны, так как вскоре сталкиваются с обычными частицами и аннигилируют. Но мы все же имеем очень точное представление об их массе и величине заряда.
В атоме антиводорода «антиэлектрон» - позитрон обращается вокруг отрицательно заряженного ядра - антипротона. При столкновении с обычным атомом водорода из-за мгновенной аннигиляции высвободилась бы энергия, примерно в 1000 раз превосходящая энергию распада ядра, используемую, например, в атомных электростанциях.
По соображениям симметрии большинство астрофизиков полагают, что во Вселенной имеется ровно столько материи, сколько и антиматерии. К счастью, миры, где атомные ядра имеют положительные заряды, удалены от миров с отрицательно заряженными ядрами атомов на весьма солидные расстояния. Поэтому в течение ближайших 1000 млрд. лет нет оснований опасаться столкновения нашей Галактики с ее антиподом во Вселенной.
ЧТО ТАКОЕ МОДЕЛЬ?
Возможности человеческого чувственного восприятия весьма ограниченны. Пока речь идет об отрезке длиной в 1 мм или 10 км, о трех месячных окладах или о ведре воды, мы представляем себе эти величины вполне конкретно. Но толщину паутинки, или миллион марок, или расстояние между Берлином и Сиднеем зрительно воспринять мы не можем. А уж элементарная частица совершенно не поддается наглядному представлению. Мы можем осмыслить ее только с помощью математических уравнений или моделей. Ученые постоянно пытаются в своих моделях придать наглядность тому, что не поддается наглядному представлению. Лучшими моделями являются те, которые будучи весьма наглядными, позволяют производить на их основе расчеты. С 1910 г. ученые знали, что атом - это не простейший элемент в строении материи и что сам он построен из других элементов. Неизвестно было только, каким образом. Эта неизвестность очень мешала. Ведь строение нашего мира весьма красиво (пусть с мелкими дефектами) объяснялось при помощи маленьких бесструктурных шариков, называемых атомами. В кристаллохимии и общей химии, при расшифровке строения гена такая модель атомов с успехом используется и до сих пор. Но в те времена задача состояла в том, чтобы предложить такую модель строения атома, которая давала бы возможность дальнейшего использования представления об атомах-шариках и вместе с тем учитывала новейшие достижения физики.
В двадцатых годах нашего века физики Нильс Бор (1885-1962) и Вольфганг Паули (1900-1958) создали модель атома, которая объясняла спектры излучения и поглощения атомов и удовлетворяла одновременно требованиям наглядности (Ядерная (планетарная) модель атома была предложена Э. Резерфордом; Н. Бор усовершенствовал ее, введя два постулата (допущения), основанных на квантовой теории. В. Паули сформулировал принцип («запрет Паули»), согласно которому в физической системе не может быть двух электронов, находящихся в одинаковом квантовом состоянии. - Прим, перев). Бор мысленно представил себе, что электроны вращаются вокруг положительно заряженного ядра по вполне определенным орбитам. «Величина» орбит была вычислена с помощью кванта действия Планка. Последнее понятие связывает частоту электромагнитного излучения с энергией кванта, то есть минимальной порцией энергии излучения с заданной частотой. Оказалось, что и параметры электронных орбит связаны с постоянной Планка - коэффициентом пропорциональности между частотой и минимальной порцией энергии. Постоянная, или квант действия, Планка - реальная величина, найденная экспериментально и обозначаемая латинской буквой h.