Зеркальный мир - Страница 3
Требуется определить величину отрезка X, исходя из известной высоты трех башен. Как видно из цветного построения, решений здесь существует бесконечное множество. Это типичный пример задачи с 'ловушкой'
Казалось бы, для решения достаточно взять в руки циркуль и линейку. Но тут же выяснится, что ответов будет бесконечное множество. Иными словами, на вопрос о значении X не может быть однозначного ответа.
В этой книге вы нередко будете сталкиваться с задачами, требующими размышлений. В этом есть определенный педагогический смысл. Такого рода задачи, даже если они и не имеют решения, как, например, предложенная выше, касаются какой-либо проблемы, лежащей у пределов нашего знания. Большей частью это те самые пределы, перед которыми пасует знаменитый «здравый смысл», и лишь строго математическое логическое мышление вкупе с естественнонаучным познанием способно привести к правильному решению.
Обратимся снова к человеку: при сравнении живых существ сходство ощущается явно, если совпадают их пропорции. Поэтому могут быть похожи дети и взрослые. Хотя масса и размеры любой из частей тела, будь то нос или рот, различны, но пропорции похожих индивидов совпадают.
Поразительный пример подобия - глазомерная оценка расстояния с помощью большого пальца. Таким способом военные и моряки прикидывают расстояние между двумя пунктами на местности или в море, сопоставляя их с шириной пальца или кулака. В самом простом случае закрывают один глаз и смотрят открытым глазом на палец вытянутой руки, используя его как визир.
При визировании с помощью большого пальца вытянутой руки (один раз левым глазом, а другой - правым) палец 'отскакивает' примерно на 6°
Если раскрыть прежде закрытый глаз (а второй зажмурить), палец на видимое расстояние переместится в сторону. В градусном выражении это расстояние составляет 6°. И притом величина этого «прыжка» (в пределах допустимой ошибки) одинакова у всех людей! Так, правофланговый роты, парень двухметрового роста, и самый маленький - левофланговый, ростом всего лишь метр шестьдесят, сравнив эти «прыжки» пальца, получат одну и ту же величину.
Причина этого явления в конечном счете кроется в подобии людей и, конечно, в законах оптики, которым подчиняется наше зрение.
Известно и «правило кулака» - в самом прямом смысле этого слова - для грубой прикидки величины угла. Если мы посмотрим одним глазом на кулак вытянутой руки (на сей раз одним и тем же глазом), то ширина кулака составит 10°, а расстояние между двумя косточками фаланг 3°. Кулак и оттопыренный в сторону большой палец составят 15°. Комбинируя эти мерки, можно приблизительно измерить все углы на местности.
При помощи кулака вытянутой руки легко найти три основных угла. Комбинируя их, можно определять другие углы
И наконец, еще одна угловая мера нашего тела, которая может пригодиться при домашних работах. Угол между большим пальцем и мизинцем растопыренной ладони составляет 90°. Это кажется маловероятным, но вы можете тотчас проверить все сами, приложив растопыренные пальцы ладони к углу нашей книги. Положите мизинец строго параллельно одному краю и двигайте руку вдоль него вниз, пока большой палец также не ляжет на нижний край. Убедились?
Конечно, здесь ошибка порой оказывается сравнительно большой, так как в зависимости от возраста и разработанности кисти большой палец может отставляться на различные расстояния. Но для первого испытания, позволяющего решить, существенно ли отклоняется измеряемый угол от прямого, такой метод вполне пригоден.
ЛАЙНЛАНДИЯ И ФЛАТЛАНДИЯ
Люди, наделенные воображением, уже давно обратили внимание на то, что законы конгруэнтности, столь строгие для двумерного пространства, при применении на практике нередко требуют использования третьего измерения.
Когда сервируют стол к парадному приему гостей, салфетки обычно складывают треугольником. Но стоит собрать эти треугольники в стопку, один на другой, как обнаруживается, что треугольников этих два вида: одни сразу же «подходят» друг к другу, а другие приходится перевернуть «на правильную сторону». Аналогичная проблема возникает и при штамповке мелких деталей, когда кто-нибудь пытается сложить готовую продукцию в штабеля.
Поэтам и писателям свойственно фантазировать вокруг более или менее вероятных ситуаций. Так, существуют произведения, в которых рисуется жизнь в двумерном пространстве (где «салфетку» никак не перевернешь).
Некоторые авторы идут еще дальше и пробуют представить себе жизнь в одномерном пространстве, в Стране Прямой - Лайнландии. Лайнландия населена лишь тоненькими деревянными палочками, которые в простейшем случае ничем друг от друга не отличаются. Однако стоит придать им головки (сразу вспоминаются спички!), и у них тут же появляются две возможности.
Если флатландцам захочется взглянуть друг на друга, одному из них придется встать на голову. Дома во Флатландии требуют особой конструкции дверей
Либо все спички обращены головками в одну сторону - тогда их совмещение не вызывает сложностей. Либо часть спичек лежит головками налево, а часть - головками направо. Математик из Лайнландии не имеет практической возможности перевести «левые» спички в «правые». Но математик из Страны Плоскости - Флатландии, который располагает еще одним измерением, сразу найдет простое решение: повернет спичку в плоскости.
Однако, по мнению некоторых писателей, жизнь и во Флатландии не так-то проста. Представим себе, что жители этой страны маленькие прямоугольники с глазом (а глаз у них только один) в одном из углов. Видеть такой прямоугольник может, конечно, только в плоскости, и ему никогда не удается взглянуть на эту плоскость сверху. Так что ни один флатландец никогда не сможет представить себе, как на самом деле он выглядит: для этого уже необходим взгляд из трехмерного пространства. Домики у флатландцев были бы примерно такими, как на детских рисунках. С той разницей, что двери находились бы сбоку и открывались бы только в этой же плоскости. Но вот дверные петли пришлось бы делать вне плоскости, выше или ниже ее. Кроме того, понадобилась бы сложная система подпорок, чтобы стена домика не рухнула, когда его обитатели захотели бы открыть дверь. А двое флатландцев смогли бы взглянуть друг на друга лишь в том случае, если бы одному из них удалось встать на голову.
Грузы во Флатландии перевозятся на кругах. Постройка платформы или тележки там невозможна: ведь для устройства оси и ее крепления необходимо третье измерение
Положение усложнилось бы еще больше, если бы Флатландию населяли два народца. Скажем, лево- и правосторонние флатландцы. Требуется большое воображение, чтобы живописать все возможные последствия такой ситуации, особенно если учесть, что мы-то привыкли мыслить в трех измерениях!
Поскольку и Лайнландия, и Флатландия представлялись писателям в юмористическом свете, не приходится удивляться, что литература на эту тему возникла в Англии.
В 1880г. английский педагог Эдвин Эбони Эбботт написал книгу о Флатландии и ее жителях (Эбботт Э. Э. Флатландия. В кн.: Эбботт Э. Э. Флатландия. Бюргер Д. Сферландия. -М.: Мир, 1976). Флатландец Эбботта, попав во сне в Лайнландию, тщетно пытается убедить тамошних обитателей в существовании плоскости.
По ходу действия одному из флатландцев удается познать трехмерное пространство, за что его признают «безумнейшим из безумных».
Через двадцать с лишним лет, в 1907 г., Ч. Г. Хинтон опубликовал роман «Случай во Флатландии». В нем два флатландских народца ведут войну. Поскольку все флатландцы обращены лицом в одну сторону, один из народцев всегда в безнадежном проигрыше: он не может повернуться и нанести ответный удар в нужном направлении - ненавистный враг постоянно сидит у него на шее. Но в конце концов добро побеждает. Какая-то умная голова замечает, что Флатландия расположена на шарике и, значит, можно, обежав вокруг него, зайти врагу в тыл.