Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - Страница 19
На первый взгляд деторождение кажется процессом, построенным на совместных усилиях и общих интересах, но в реальности генетические интересы матери, отца и плода вовсе не идентичны. Разумеется, любой плод наследует 50 процентов своих генов от матери, а другие 50 процентов от отца. Однако во всем животном мире, но особенно у людей, на плечи самок и женщин ложатся основные обязанности по вынашиванию потомства, а после рождения – по его выкармливанию и выращиванию. Вложения со стороны самцов (в виде спермы) в буквальном смысле слова микроскопичны. Кроме того, дети, произведенные матерью на свет, несут ее гены, но отцы у них могут быть разными. Следовательно, в генетических интересах матери умерить свои вложения в любого отдельно взятого ребенка, чтобы распределить силы среди всего предполагаемого количества детей, которых она может родить на протяжении активного репродуктивного периода. Другими словами, природа программирует мать на то, чтобы не складывать все яйца в одну корзину. В то же время в эгоистических интересах отцовских генов, чтобы несущий их плод и затем детеныш/ребенок требовал от матери больше того, что она склонна ему давать. И если для матери потеря одного ребенка, хотя и, безусловно, болезненна, может быть компенсирована рождением других детей от любых других партнеров, то перед самим плодом стоит одна задача – выжить. Все это создает условия для конфликта.
Эволюционисты считают, что отцовские гены в виде спермы и затем своей доли в эмбрионах благоприятствуют механизмам, которые стимулируют восприимчивость матки и способствуют неразборчивой имплантации всех подряд эмбрионов независимо от их жизнеспособности. И наоборот, материнские гены способствуют запуску механизмов, которые отсортировывают качественных эмбрионов от некачественных, с тем чтобы не растрачивать материнские силы на потомство, имеющее генетические дефекты или проблемы совместимости. Если плод все же закрепляется в матке, отцовские гены в плоде и плаценте принимаются манипулировать матерью, стараясь заставить ее дать плоду больше ресурсов, чем это отвечает ее долгосрочным интересам. Разумеется, материнские гены стараются противостоять этой манипуляции. Хейг сравнивает этот конфликт интересов с перетягиванием каната. Представьте себе две команды нацеленных на победу мускулистых мужчин. Если силы с обеих сторон равны, флажок в середине каната не сдвигается с места, несмотря на все их усилия. Так происходит при нормальной беременности – ни одному из наборов генов не удается одержать победу в скрытой борьбе интересов, и беременность развивается успешно и для плода, и для матери. Но если одна из сторон дает слабину, вся система рушится.
В 1940–1960-х годах великий иммунолог-новатор сэр Питер Медавар, занимаясь фундаментальными исследованиями в области иммунологии и трансплантации, пролил свет на то, как иммунная система принимает или отторгает кожные трансплантаты и пересаженные органы. При этом Медавара заинтересовал один странный вопрос, связанный с беременностью: почему иммунная система автоматически распознает и атакует антигены (чужеродные белки), присутствующие в пересаженной ткани, но материнская иммунная система принимает и терпит эмбрионы, несмотря на присутствие в них чужеродных отцовских антигенов? Почему организм матери не отвергает «наполовину чужеродный» плод? Медавар предположил, что материнская иммунная система не обращает внимания на отцовские антигены, что может происходить по нескольким причинам: во-первых, потому что физически плод отделен от иммунной системы матери; во-вторых, потому что плод является незрелым в иммунологическом плане или же, наконец, потому что иммунная система матери почему-то перестает реагировать на эмбриональные антигены.
Наблюдения Медавара за последние полвека легли в основу многочисленных исследований в области толерантности матери к плоду, и в настоящее время ученые приблизились к исчерпывающему объяснению того, как работает этот сложнейший механизм. При этом они опровергли все предположения Медавара, поскольку стало очевидным, что между матерью и плодом не существует непроницаемого барьера, а происходит постоянный обмен. Отцовские антигены, присутствующие в продуктах клеточного распада от плода и плаценты, обнаруживаются в организме матери во время беременности и даже после нее. Более того, материнская иммунная система «знакомится» с отцовскими антигенами еще до того, как эмбрион пытается закрепиться в стенке матки.
Давно было замечено, что женщины чаще страдают преэклампсией, если они забеременели после короткого периода сожительства с данным сексуальным партнером, чем в том случае, если они сожительствовали с ним более шести месяцев перед зачатием. Последующие беременности от того же партнера, как правило, несут более низкий риск развития преэклампсии, который, однако, возрастает, если женщина меняет партнера между беременностями или если между двумя беременностями проходит несколько лет. Риск развития преэклампсии при первой беременности выше, если до зачатия пара регулярно пользовалась презервативами или занималась сексом относительно редко. Также этот риск значительно возрастает, если беременность наступила в результате ЭКО, особенно если использовалась донорская сперма, и снижается в том случае, если пара часто занималась незащищенным сексом до и после процедуры ЭКО. Есть даже данные о том, что женщины, которые проглатывают сперму партнера во время орального секса, сталкиваются с более низким риском развития преэклампсии. Все это говорит о том, что компоненты семенной жидкости и/или сперматозоидов могут взаимодействовать с женской иммунной системой, которая благодаря регулярным контактам с эякулятом партнера учится распознавать его антигены и развивает толерантность к ним. Это в некоторой мере облегчает дальнейший процесс «перетягивания каната», включающий попадание спермы в репродуктивный тракт, оплодотворение яйцеклетки, имплантацию эмбриона и развитие плода, на протяжении которого отцовские и материнские гены реализуют различные стратегии – первые стремятся во что бы то ни стало передать себя следующему поколению, а вторые хотят правильно выбрать партнера и эмбрион, которые заслуживают того, чтобы потратить на них время и силы.
Сперма представляет собой не просто смесь сперматозоидов и питательной семенной жидкости, а сложнейший коктейль из активных биохимических агентов. Психолог Гордон Гэллап из Университета штата Нью-Йорк в Олбани вместе со своими коллегами Ребеккой Бёрч и Лори Петриконе исследовал биохимический состав спермы и выявил активные ингредиенты, которые манипулируют женской репродуктивной системой и реакцией женского организма.
Влагалище, говорит Гэллап, это идеальный путь для проникновения компонентов спермы в кровяное русло женщины. Влагалище снабжено густой сетью кровеносных сосудов, и кровь от него напрямую идет к сердцу через подвздошную вену, минуя печень, которая обычно отфильтровывает чужеродные вещества. Это означает, что в течение одного-двух часов после осеменения в крови женщины можно обнаружить вещества, присутствующие в сперме партнера, – причем действие многих из этих веществ направлено на то, чтобы способствовать оплодотворению яйцеклетки и имплантации оплодотворенного эмбриона в матке. Вот почему при искусственном оплодотворении, когда используется «промытая» сперма, объясняет Гэллап, вероятность оплодотворения и имплантации эмбриона значительно снижается. Гэллап также сообщает об одном исследовании, в процессе которого женщинам была проведена процедура искусственного оплодотворения, известная как перенос гаметы в маточную трубу (процедура GIFT). При этом половину женщин попросили воздержаться от занятий сексом до и после процедуры, а вторую половину, наоборот, попросили активно заниматься сексом в этот период. В результате в первой группе забеременело всего пять из восемнадцати женщин, а во второй – пятнадцать из восемнадцати.
Семенная жидкость содержит удивительное количество гормонов, которые мы обычно ассоциируем с женским организмом. Она включает эстроген; фолликулостимулирующий гормон (ФСГ), который стимулирует рост и созревание фолликулов в яичниках; лютеинизирующий гормон (ЛГ), резкий выброс которого вызывает овуляцию. Человеческая семенная жидкость также содержит ряд сигнальных молекул – цитокинов, в том числе интерлейкины 1, 2, 4, 6 и 8, фактор некроза опухоли альфа, гамма-интерферон и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), причем все эти вещества обладают иммуноподавляющими свойствами и делают матку более восприимчивой к имплантации оплодотворенного эмбриона. Гэллап сообщает, что содержание этих гормонов в семенной жидкости часто превышает их уровни, обнаруживаемые у небеременных и даже у некоторых беременных женщин. Главным среди них является хорионический гонадотропин человека (уровень которого и измеряется в стандартных тестах на беременность), который поддерживает нормальную работу желтого тела в яичнике после овуляции, таким образом способствуя поддержанию высокого уровня прогестерона, что является жизненно важным для сохранения беременности.