Занимательный космос. Межпланетные путешествия - Страница 7
Признаюсь, не без волнения приступаю я к строгому разбору пленительных повестей увлекательного романиста. За десятки лет, протекших со времени появления (1865–1870 гг.) этих произведений, увенчанных премией Академии, они успели стать любимым чтением молодежи всех стран. В годы моей юности они зажгли во мне впервые живой интерес к астрономии; не сомневаюсь, что тем же обязаны им и многие тысячи других читателей. И если я решаюсь вонзить анатомический нож в поэтическое создание романиста, то утешаю себя мыслью, что следую лишь примеру его даровитого соотечественника, известного физика Шарля Гильома[10].
Вы имеете превратное представление о науке, если думаете, что она безжалостно подсекает крылья воображению и обрекает нас пресмыкаться в обыденности повседневной жизни. Бесплодной Сахарой было бы поле научных исследований, если бы ученые не прибегали к услугам воображения, не умели отвлекаться от мира видимого, чтобы создавать мысленные, неосязаемые образы. Ни одного шага не делает наука без воображения; она постоянно питается плодами фантазии, но фантазии научной, рисующей воображаемые образы со всею возможною отчетливостью.
Научный разбор романа Жюля Верна не есть поэтому столкновение действительности с фантазией. Нет, это соперничество двух родов воображения – научного и ненаучного. И победа остается за наукой вовсе не потому, что романист слишком много фантазировал. Напротив, он фантазировал недостаточно, не достроил до конца своих мысленных образов. Созданная им фантастическая картина межпланетного путешествия страдает недоделанностью. Нам придется восполнить эти недостающие подробности, и не наша вина, если упущенные черты существенно изменяют всю картину.
Надо ли пересказывать содержание романа, который у всех в памяти? Напомню лишь вкратце, словами самого Жюля Верна, главнейшие из интересующих нас обстоятельств.
«В 186… году весь мир был в высшей степени взволнован одним научным опытом, первым и совершенно оригинальным в летописях науки. Члены Пушечного клуба, основанного артиллеристами в Балтиморе после американской войны[11], вздумали войти в сношение с Луной, – да, с Луной, – послав в нее снаряд. Их председатель, Барбикен, инициатор предприятия, посоветовавшись с астрономами Кэмбриджской (в Сев. Америке) обсерватории, принял все необходимые меры, чтобы обеспечить это необыкновенное предприятие.
Рис. 10. Проект Жюля Верна. «Снаряд будет представлять собою алюминиевую гранату»…
«Согласно указаниям, данным членами обсерватории, пушка, из которой будет сделан выстрел, должна быть установлена в стране, расположенной между 0° и 28° северной или южной широты, чтобы можно было навести ее на Луну в зените. Снаряду должна быть дана первоначальная скорость в 16 тысяч метров в секунду. Выпущенный 1 декабря в десять часов сорок секунд вечера, он должен достичь цели через четыре дня после своего отправления, 5 декабря ровно в полночь, в тот самый момент, когда Луна будет находиться в своем перигее, т. е. в ближайшем расстоянии от Земли.
«Решено было, что 1) снаряд будет представлять собою алюминиевую гранату диаметром в 275 см, со стенками толщиной в 30 см, и будет весить 9 т; 2) пушка будет чугунная, длиною 275 м, и будет вылита прямо в земле; 3) на заряд будет взято 107 т пироксилина, который, развив под снарядом шесть миллиардов литров газа, легко добросит его до ночного светила.
«Когда эти вопросы были разрешены, председатель клуба, Барбикен, выбрал место, где после чудовищной работы была вполне успешно отлита эта колумбиада (пушка).
«В таком положении находились дела, когда случилось событие, во сто раз увеличившее интерес, возбужденный этим великим предприятием.
«Один француз, фантаст-парижанин, умный и отважный, попросил заключить его в снаряд, так как он хочет попасть на Луну и познакомиться с земным спутником[12]. Он помирил председателя Барбикена с его смертельным врагом, капитаном Николаем, и в залог примирения уговорил их отправиться вместе с ним в снаряде. Предложение было принято. Изменили форму снаряда. Теперь он стал цилиндроконическим. Этот род воздушного вагона снабдили сильными пружинами и легко разбирающимися перегородками, которые должны были ослабить силу толчка при выстреле. Захватили съестных припасов на год и воды на несколько месяцев, газа на несколько дней. Особый автоматический аппарат изготовлял и доставлял воздух, необходимый для дыхания трем путешественникам.
«1 декабря в назначенный час, в присутствии необычайного скопления зрителей, начался полет, – и в первый раз три человеческих существа, покинув земной шар, понеслись в мировое пространство с полной уверенностью, что достигнут своей цели».
Прежде всего нам предстоит обсудить, конечно, вопрос о том, насколько реальна самая идея закинуть пушечное ядро на Луну. Мысль о возможности бросить тело с такой скоростью, которая навсегда унесла бы его с Земли, кажется многим совершенно нелепой. Большинство людей привыкло думать, что всякое брошенное тело непременно должно упасть обратно. Таким людям идея Жюля Верна о посылке ядра на Луну представляется абсурдной и беспочвенной. Мыслимо ли, в самом деле, сообщить земному телу такую скорость, чтобы оно безвозвратно покинуло нашу планету? Механика дает на этот вопрос безусловно положительный ответ.
Предоставим слово Ньютону. В своих «Математических началах физики», фундаменте современной механики и астрономии, он писал (книга I, отд. I, определение V):
«Если свинцовое ядро, брошенное горизонтально силою пороха из пушки, поставленной на вершине горы, отлетает по кривой – прежде чем упасть на Землю – на две мили, то (предполагая, что сопротивления воздуха нет), если бросить его с двойной скоростью, оно отлетит приблизительно вдвое дальше; если с десятикратною, то в десять раз. Увеличивая скорость, можно по желанию увеличить и дальность полета и уменьшить кривизну линии, по которой ядро движется, так что можно бы заставить его упасть в расстоянии 10°, 30° и 90°, можно заставить его окружить всю Землю и даже уйти в небесные пространства и продолжать удаляться до бесконечности».
Итак, ядро, извергнутое воображаемой ньютоновой пушкой, при известной скорости безостановочно кружилось бы около нашей планеты, наподобие крошечной
Луны (рис. 11). Мы можем вычислить, какая начальная скорость нужна для такого полета ядра. Вычисление это (если пренебречь сопротивлением атмосферы) настолько же просто, насколько любопытен его результат.
Рис. 11. Воображаемый опыт Ньютона с пушечными снарядами
Чтобы найти искомую скорость, отдадим себе отчет в том, почему ядро, выброшенное пушкой горизонтально, падает в конце концов на Землю. Потому, что земное притяжение искривляет путь ядра – снаряд летит не по прямой линии, а по кривой[13], которая упирается в земную поверхность. Но если бы мы могли уменьшить кривизну пути ядра настолько, чтобы сделать ее одинаковой с кривизной земной поверхности, то ядро никогда на Землю не упало бы: оно вечно мчалось бы по кривой, концентрической с окружностью нашей планеты. Этого можно добиться, сообщив ядру достаточную скорость, и мы сейчас определим – какую. Взгляните на рис. 12.
Рис. 12 Вычисление скорости ядра, которое должно вечно кружиться около Земли
Снаряд, выброшенный пушкой из точки А по касательной, спустя секунду был бы, скажем, в точке В, – если бы не действие земного притяжения. Тяжесть меняет дело, и под ее влиянием снаряд через секунду окажется не в В, а ниже настолько, насколько всякое свободное тело опускается в первую секунду своего падения, т. е. на 5 м. Если, опустившись на эти 5 м, снаряд окажется над уровнем Земли ровно настолько же, насколько и в точке А, то значит, он летит параллельно земной поверхности, не приближаясь и не удаляясь от нее. Это и есть то, чего мы желаем добиться. Остается вычислить лишь длину AB, т. е. путь снаряда в одну секунду; результат и даст искомую секундную скорость ядра. Вычисление может быть выполнено по теореме Пифагора. В прямоугольном треугольнике АВО линия АО есть земной радиус, равный 6 371 000 м. Отрезок ОС = АО, отрезок ВС = 5 м; следовательно, OB = 6 371 005 м. По теореме Пифагора имеем: