Юный техник, 2008 № 02 - Страница 5

Изменить размер шрифта:

Поэтому на Z-машине удается моделировать не только ядерные, но и термоядерные взрывы. Когда в фокус разряда поместили маленькую капсулу с дейтерием, в момент вспышки был зарегистрирован поток нейтронов, что говорит о протекании реакций термоядерного синтеза. Поэтому Национальное управление по ядерной безопасности США выделило 61,7 млн. долларов на совершенствование Z-машины. Пиковую мощность планируется повысить до 2,7 мегаджоулей, а количество экспериментов с 200 до 400 в год.

По материалам журнала Popular Science

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

«Жидкая» броня

Я слышал, что появилась броня из жидкости. Как это может быть? Известны ли подробности?

Виктор Самусенков,

г. Тула

Разведите крахмал в воде из расчета примерно половина на половину, и у вас получится своеобразный кисель. Вы можете мешать его чайной ложкой, но только медленно. Попробуйте приложить усилие — и ничего не выйдет: сил может не хватить. Примерно так работает и «жидкая» броня.

Впрочем, обо всем по порядку.

Похвальное слово кевлару

Еще недавно броневая защита была лишь двух типов. Во-первых, так называемая пассивная броня, которая существовала еще в древние времена. Удару меча, копья или стрелы противостояли щиты, панцири, кольчуги… Появление огнестрельного оружия, казалось, эпоху доспехов завершило, поскольку пуля пробивала любой панцирь.

Второе рождение брони состоялось лишь в начале XX века. На поле боя появились бронемашины, а затем — уже во второй половине прошлого столетия — все шире стали распространяться бронежилеты.

Более легкие сейчас делают из синтетических материалов. А те, что тяжелее, имеют еще специальные карманы, в которые вставляют пластинки из титана или специальной керамики. Именно они противостоят винтовочным или автоматным пулям, в то время как жилеты без вставок спасают лишь от пуль пистолетов.

Впрочем, не стоит думать, что под ударами скоростных и тяжелых пуль кевлар рвется. Нет, кевлар — его химическое название «полипарафениленфталамид» — в 4 раза прочнее стали. Так что скажем за него спасибо химикам во главе со Стефани Кволек, синтезировавшим этот материал в 60-х годах прошлого века. В наши дни в современных бронежилетах используют и более современный материал Zylon, созданный в Японии. Он еще легче и прочнее кевлара.

Тем не менее, все чаще легкие бронежилеты подводят полицейских и бойцов спецназа. И дело здесь не только в возросшей огневой мощи современного оружия, но в том, что иной раз пуля травмирует тело, хотя и не прорывает нитей синтетического волокна. Именно в таких случаях выручает броневая пластинка. Она к тому же распределяет приложенную силу на большую площадь, а то ведь от пуль на теле остаются гематомы.

Однако такие жилеты, как уже сказано, тяжелы (их вес достигает 15 кг), стесняют движения бойцов. Стало быть, их нужно улучшать.

Что у вас в активе?

Броня второго типа — так называемая активная — не просто принимает удар на себя, а отвечает ударом на удар. Основу ее составляют кумулятивные заряды, которые отличаются одной особенностью. Вся их взрывная мощь направлена обычно в одну сторону, а то и в одну точку. В итоге снаряд, попавший в танк или бронетранспортер, имеющий активную защиту, попросту отбрасывает направленный взрыв. Таким образом, сохраняются и экипаж, и сама машина.

И все бы замечательно, если б активная броня опять-таки не была громоздкой. Все важные узлы бронемашины приходится обвешивать сетками с шашками кумулятивной защиты. Кроме того, при любом взрыве не обойтись без отдачи. И если для танка это не имеет большого значения, поскольку многотонную махину с места отдачей не сдвинешь, то попробуйте представить себе, что станет с бойцом, если по его телу развесить пакеты с кумулятивными зарядами активной защиты. Нужно было искать иной выход из положения. И его нашли.

Текучая защита

Еще лет двадцать тому назад специалисты начали эксперименты с так называемыми электро- и магнитореологическими жидкостями. В самом простом виде такая жидкость представляет собой взвесь металлического порошка в машинном масле. В обычном состоянии ее, как и наш экспериментальный «кисель», можно мешать ложкой. Но стоит поместить жидкость в магнитное поле, и смесь «загустевает» до твердости монолита.

Поначалу такие жидкости использовали, например, для создания автомобильных и бесступенчатых коробок передач. Но лет десять тому назад американским исследователям пришло в голову испытать подобные жидкости переменной вязкости для создания бронежилетов нового типа.

Мысль как будто неплоха. Но ведь для наведения магнитного поля солдат должен носить с собой достаточно мощные, а значит, и массивные источники электропитания. А как узнать, в какой момент включать защиту?

Юный техник, 2008 № 02 - _14.jpg

Бумага, пропитанная раствором «жидкой» брони, не пробивается гвоздем, если по нему даже сильно стукнуть кулаком.

Пусть защита включает себя сама, решили исследователи. Ведь существуют же, например, пьезоэлементы, способные механическое давление или перемещение преобразовывать в электромагнитные импульсы…

В общем, первый вариант защиты мыслился таким. Бронежилет из кевлара имеет карманы. Внутрь каждого заливается электрореологическая жидкость, а сверху крепится пластина пьезоэлемента. При попадании, скажем, пули или осколка в пьезоэлемент, тот вырабатывает электрический импульс, жидкость затвердевает, и пуля останавливается.

Идея как будто неплохая, но когда прикинули общую массу такого обмундирования, оказалось, что носить подобную защиту под силу разве что слону. Да и переход из жидкого в твердое состояние требует десятых долей секунды. А нужны миллисекунды…

Броня как вода

Специалисты из Делавэрского университета (США), а также их коллеги из России и Израиля пошли кружным путем. Ими были созданы новые материалы на основе неорганических наноструктур, подобных фуллеренам.

Тут, видимо, надо пояснить, что фуллеренами называют крошечные, состоящие примерно из 60 атомов углерода, полые шарики, а затем и нанотрубки, обладающие рядом уникальных свойств.

В частности, фуллереновые материалы обладают изумительной прочностью. Во время испытаний наноброня на основе углерода и титана останавливала пули со стальным сердечником, летящие со скоростью 1,5 км/с и создающие в точке удара давление около 250 т/см2!

Однако первые образцы новых наножилетов тоже оказались тяжелы и громоздки. Вот тогда-то специалисты и задумались над созданием «жидкой» брони. Ведь нынешние нанотехнологии позволяют создать материалы, например, из смеси атомов кремнезема и полиэтиленглюколя. Такая смесь в обычном состоянии не имеет четко выраженной кристаллической структуры и напоминает переохлажденную воду, которая обладает свойствами жидкости. Но достаточно малейшего механического воздействия, крошечного толчка — и жидкость тут же превращается в твердый лед.

Нечто подобное происходит в жидкой наноброне. Удар по ней приводит к тому, что раствор в мгновенье ока, а точнее в миллисекунду, превращается в монолит. Да такой прочный, что пуля попросту в нем застревает. А как только механическая нагрузка исчезает, структура снова становится жидкой. И боец в «наножилете» обретает свободу движений.

Впрочем, и такая конструкция — еще не идеал, считают специалисты. В самом деле, что будет, если боец повредит свой жилет, продираясь сквозь колючий кустарник? Вся защитная жидкость попросту выльется…

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com