Юный техник, 2005 № 08 - Страница 13

Изменить размер шрифта:

Как-то раз на одном из полигонов в нашей стране обстреливали бронебойными снарядами, летевшими со скоростью более 1500 м/с, толстую броневую плиту. При этом заметили, что она сильно раскалилась. Это вызвало у специалистов недоумение. Решили, что нагрев вызван переходом в тепло кинетической энергии снарядов. Для проверки этой гипотезы достаточно школьного курса физики. Подсчитали и удивились, что тепловая энергия броневой плиты была в четыре раза больше, чем кинетическая энергия попавших в нее снарядов!

Сначала заподозрили, что происходит химическое соединение сердечника снаряда со сталью плиты с выделением тепла. Но никаких продуктов химических реакций обнаружить не удалось. Стало ясно, что энергия берется откуда-то еще. Уж не происходят ли какие-нибудь ядерные процессы в уране? Нет, обстрел броневых плит снарядами с сердечниками из вольфрама и даже стали давал примерно такие же результаты: откуда-то появлялась огромная энергия. Когда же скорость снарядов снижали примерно до 1200 м/с и меньше, эффект исчезал. Плита нагревалась ровно настолько, сколько могла дать ей кинетическая энергия. Тут вспомнили и про одну из загадок астрофизики. Когда на землю падает железоникелевый метеорит со скоростью 700 м/с, то он создает крохотную воронку и сам остается почти целехоньким. Но, если скорость метеорита достигает 3–4 тыс. м/с, образуется громадная воронка, в которой удается найти лишь ничтожные следы метеорита. При этом размеры воронки также не удается объяснить только кинетической энергией небесного тела.

Загадку прояснили в начале 90-х годов прошлого века русские ученые профессор МГТУ Михаил Константинович Марахтанов и его сын, аспирант Калифорнийского университета в Беркли Алексей Марахтанов.

Все металлы имеют кристаллическую структуру, на создание которой затрачивается немалая энергия. Состоит кристалл из отдельных положительно заряженных атомов, расположенных в узлах кристаллической решетки. Между ними, как и между любыми одноименно заряженными телами, действуют силы отталкивания. Казалось бы, атомы должны немедленно разлететься в стороны. Но между ними постоянно находится некоторое количество движущихся электронов. Они выполняют роль клея, удерживающего атомы металла в узлах кристаллической решетки.

Электроны движутся хаотично. Как только один из них уходит со своего места, немедленно находившийся рядом с ним атом металла начинает выходить из узла, но появляется следующий электрон, и атом становится на место.

Если бы каким-то образом удалось вывести из кристалла все электроны, он бы немедленно распался на отдельные атомы, и при этом выделилась бы энергия, затраченная на создание кристалла. Это и происходит при ударе снаряда о броню. Если скорость его достаточно велика, то электроны, скрепляющие атомы кристаллов его сердечника, по инерции вылетают, а атомы под действием электрического отталкивания разлетаются в стороны. Происходит взрыв материала сердечника. А энергия его не меньше, чем энергия взрыва тротила. Скажем в скобках: зная это, можно понять, почему немецкие снаряды из урана вели себя примерно как вольфрамовые — скорость их была невелика. И лишь в 60-х годах достигла нужной величины.

Способность кристаллов металла взрываться возрастает по мере роста их порядкового номера в таблице Менделеева. Наиболее сильно она выражена у урана и вольфрама, наименее — у алюминия. Процесс взрыва кристаллической решетки за счет удара о преграду сегодня имеет лишь сугубо военное применение. Нет сомнения, что его можно использовать и иначе.

М. и А. Марахтановы нашли и иной способ высвобождения энергии кристалла. Но об этом — в следующий раз.

А. ВАРГИН

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Поверь ушам своим

Юный техник, 2005 № 08 - _58.jpg

В том, что стереозвук — это хорошо, убеждать никого не надо. Но по радио он звучит только в УКВ-диапазоне. В области от коротких до длинных волн, у которых немало поклонников, стереофонических передач нет. Магнитные кассеты и CD-диски выпускаются только со стереозаписью, есть еще множество малогабаритных магнитол, которые воспроизводят и записывают лишь моно, и все же…

Вспомним особенности нашего слуха и принцип действия стереофонического устройства. Когда мы слушаем в зале концерт некоего оркестра, звучание инструментов, находящихся левее и правее нас, воспринимается ухом несколько по-разному, что и создает стереофоническую картину. Чтобы повторить такой эффект, на магнитную ленту одновременно записывают звук на две дорожки, но с микрофонов, расположенных у левого и правого крыла группы исполнителей.

Стереоэффект при последующем воспроизведении обеспечивается двухдорожечной магнитной головкой, сигналы с которой поступают раздельно на усилители «левого» и «правого»; каждый из них работает на свою динамическую головку. Они разносятся на некоторое расстояние левее и правее слушателя. Если мы располагаем только одним каналом, на вход которого поступает монофонический сигнал, а на выходе всего одна динамическая головка, второй канал можно создать искусственно, добавив еще одну «облегченную» головку. Электрическая схема такого акустического выхода достаточно проста (рис. 1).

Юный техник, 2005 № 08 - _59.jpg

К выходному трансформатору Т1 усилителя звуковых частот А1 присоединена встроенная в аппарат динамическая головка ВА1; параллельно ей через конденсатор С1 подключена выносная головка ВА2. Секрет в том, что головки должны иметь существенно различные частотные характеристики. Так, обычный динамик чаще всего широкополостный, и потому дополнительному следует быть «пищалкой», с диапазоном, смещенным в сторону более высоких частот. Например, типа 0,5ГДШ-26-8. Пусть первый излучатель ВА1 находится от нас слева, а дополнительный ВА2 — справа; тогда при исполнении виртуозной мелодии возникает интересный эффект: кажется, что начало музыкальной фразы берет музыкант слева, а продолжает ее другой музыкант — справа. Впечатление такое, словно исполнители «перекидывают» мелодию, как мячик, от одного к другому.

Конечно, это упрощенный пересказ эффекта, на самом деле он насыщен множеством нюансов. При единственном реальном канале возникает отчетливая стереофоническая картина. Такое явление называют псевдостереофонией.

Роль конденсатора С1 в схеме на рисунке 2 — ограничить доступ низких частот в звуковой тракт «пищалки».  Конденсатор желательно взять неполярный, типа К52-8. Указанный на схеме номинал емкости — ориентировочный, его следует подобрать применительно к используемым вами звукоизлучателям.

Тем, кого привлекает прослушивание псевдостереофонии на обычные стереонаушники, можем рекомендовать одну из радиолюбительских разработок, схема которой изображена на рисунке 2.

Юный техник, 2005 № 08 - _60.jpg

Приставка включается между гнездом для монофонического телефона, имеющимся у приемника, магнитофона, и стереопарой наушников BF1, BF2. В приставку входит согласующий трансформатор Т1, основой которого служит магнитопровод типа Ш14х16. Каждая из трех обмоток содержит по 150 витков провода ПЭВ-2 0,25, причем вторичные обмотки L2, L3 должны наматываться в одну сторону. Поскольку в стереопаре частотные характеристики телефонов практически одинаковы, для придания более высокочастотных свойств телефону BF2 в его цепь введены два одинаковых электролитических конденсатора С1 и С2, включенных встречно.

Ю. ПРОКОПЦЕВ

ПОПРАВКА

Уважаемые читатели! По техническим причинам схема в материале «…Даже в полной темноте!» («ЮТ» № 5 за 2005 г.) опубликована с ошибками. Приносим извинения и публикуем схему еще раз. Редакция.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com