Юный техник, 2005 № 05 - Страница 13

Изменить размер шрифта:

Совершая работу на протяжении рабочего хода, воздух расходует свою внутреннюю энергию и остывает. Однако температура его все еще высока, и потому он направляется в холодильник. Так условно называется змеевик, через стенки которого воздух отдает свое тепло окружающей среде. После этого он снова поступает в левый цилиндр для сжатия.

Таким образом, воздух прошел по замкнутому пути и совершил цикл, при котором тепло частично перешло в механическую энергию. Весь этот процесс называется замкнутым термодинамическим циклом. КПД этого цикла возрастает с увеличением температуры нагревания воздуха. Пределом ее, вообще говоря, является прочность металла змеевика, а реально ее ограничивают наши технологические возможности: прочность соединений, работоспособность золотников и поршней при высоких температурах. Для любительских конструкций она не превышает 400 °C. При этом КПД может достигать 10–15 %. Если учесть, что КПД двигателя мопеда лежит в пределах 5—10 %, это не так уж мало.

Очень часто воздушно-тепловые двигатели делали по классической схеме с двумя кривошипно-шатунными механизмами. КПД их был очень низок, так как из-за необходимости работы при очень низкой температуре, обусловленной стойкостью материала теплообменника, затраты мощности на сжатие составляют около 70 % мощности, получаемой при расширении. Эта мощность от поршня цилиндра расширения к поршню цилиндра сжатия передается через два кривошипно-шатунных механизма. Потери на трение в этом случае не складываются, а перемножаются, и выходит, что процесс сжатия отнимает до 90 % по энергии.

В двигателях внутреннего сгорания, откуда такая механическая схема была скопирована, затраты мощности на сжатие не превышают 20–40 % и на их экономичность почти не влияют.

Однако давно известны механизмы, позволяющие передать мощность от поршня к поршню без потерь. Для этого поршни в них просто-напросто соединяются штоком.

Схема кривошипно-кулисного двигателя, показанная на рисунке 2, работала в воздушно-тепловом двигателе одного из наших читателей.

Юный техник, 2005 № 05 - _54.jpg

Вот как он был устроен. Обратите внимание на ряд отверстий в конце обоих цилиндров. При повороте кривошипа в цилиндре сжатия возникает разрежение. Воздух из других полостей двигателя в него попасть не может благодаря наличию обратного клапана. Как только кромка поршня пройдет мимо ряда отверстий, воздух ворвется в цилиндр, заполнит его и, едва поршень изменит направление движения, сразу начнется такт сжатия. При этом он протолкнет воздух через теплообменник, где тот нагреется, и пошлет его в расширительный цилиндр. Здесь воздух совершит работу, но давление его еще не снизится до первоначального.

Когда поршень этого цилиндра откроет ряд отверстий, воздух через них выйдет. Затем поршень пойдет обратно и начнет сжимать его. На этом этапе происходит сжатие воздуха и некоторое накопление энергии. Эта энергия будет частично возвращена на вал при очередном расширении воздуха.

При таком способе работы происходит излишний выброс горячего воздуха, а значит, повышается расход топлива и потеря мощности. Добавим, что в конструкции нашего читателя цикл не был замкнут. Но благодаря этому двигатель получился предельно простым.

Замкнуть цикл не так уж сложно. Нужно лишь соединить впуск и выхлоп через дополнительный теплообменник, который обдувается струей свежего воздуха или охлаждается водой. В таком виде двигатель, работая от любого источника тепла — керосина, газа, дров, годится для привода электрогенератора.

Мощность его, по нашим расчетам, близка к сотне ватт при рабочем объеме расширительного цилиндра всего 0,1 л и скорости вращения вала около 100–120 об/мин.

Повысить мощность и экономичность двигателя можно за счет улучшения распределения горячего воздуха. Для этого нужны управляемые золотники или клапаны, открывающиеся для впуска горячего воздуха в расширительный цилиндр при достижении поршнем верхней мертвой точки и закрывающиеся после прохождения поршнем 1/3 — 1/4 хода. В идеале для этого нужны электромагнитные клапаны, управляемые при помощи пары контактов, замыкаемых, например, профилированным кулачком на валу. Такая система позволяет регулировать продолжительность впуска воздуха в расширительный цилиндр и тем самым увеличивать крутящий момент. Это полезно при движении на подъеме.

Неплохой результат можно получить и при помощи клапанов, открываемых толчком поршня (рис. 2).

С такими клапанами двигатель приобретает способность автоматически приспосабливаться к условиям дороги. При замедлении скорости на подъеме или на плохой дороге в цилиндр будет поступать больше воздуха, крутящий момент двигателя возрастет и скорость увеличится.

При движении по хорошей дороге с большой скоростью уменьшится масса поступающего в расширительный цилиндр воздуха, увеличится степень его расширения, а значит, увеличится КПД двигателя.

Таким образом, мы получаем двигатель не только бесшумный, но и не нуждающийся в коробках передач или вариаторах.

В. МАЛЬЦЕВ

Рисунки автора

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

С точки зрения чистой термодинамики безразлично, в каком устройстве мы воздух сжимаем и в каком расширяем. В начале 70-х годов прошлого века в Германии был построен автомобильный газотурбинный двигатель замкнутого цикла. В нем воздух сжимался центробежным компрессором и расширялся на лопатках турбины диаметром не более 10 см. Ради увеличения мощности воздух в него был первоначально закачан под давлением в несколько атмосфер. Но при этом начала сказываться его вязкость, и необходимую мощность получить не удалось.

Тогда конструкторы заменили воздух смесью водорода с углекислым газом и получили от двигателя все расчетные параметры. При испытаниях на улицах города оснащенный им легковой автомобиль показал расход топлива 8 литров на 100 км. Тот же автомобиль со штатным двигателем внутреннего сгорания расходовал топлива почти вдвое больше. Работа продолжения не имела.

Однако следует заметить, что газовые турбины столь малого диаметра изначально имеют очень низкий КПД и он дополнительно снижается при уменьшении скорости. В то же время поршневые машины эффективны при любых размерах и на любой скорости. Можно предположить, что аналогичный поршневой двигатель замкнутого цикла позволил бы снизить расход топлива в этом автомобиле до 5–6 литров на 100 км.

Юный техник, 2005 № 05 - _55.jpg

ФОТОМАСТЕРСКАЯ

Zoom-объективы

В прошлом выпуске рубрики мы начали рассказ о фотоаппаратах. Продолжаем.

Юный техник, 2005 № 05 - _57.jpg

Аббревиатура ZOOM после расшифровки и перевода означает — «объектив с переменным фокусным расстоянием».

В оптике фокусным расстоянием называется дистанция между фокусом линзы — точкой, в которую собираются световые лучи, и оптическим центром самой линзы.

Опытные фотографы знают: чем большее фокусное расстояние указано на оправе объектива, тем больше он способен приближать объект. Скажем, если объектив с фокусным расстоянием в 100 мм лучше всего подходит для съемки портретов, то объектив с фокусным расстоянием в 1000 м, как сильный бинокль, подходит больше для съемки диких животных с большого расстояния, самолетов в небе и прочих удаленных объектов.

Если же у вас объектив с переменным фокусным расстоянием (например, 35-200 мм), он один способен заменить сразу несколько сменных объективов и дает возможность, не сходя с места, произвести фотосъемку как общим, так и крупным планом (см. рис.).

Юный техник, 2005 № 05 - _56.jpg
Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com