Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную - Страница 9
В наши дни, чтобы увидеть сверхновую, надо просто посадить по аспиранту наблюдать за каждой галактикой в небе. Ведь в космических масштабах сто лет – это период, не слишком сильно отличающийся от среднего времени написания диссертации, а аспирантов на свете много и обходятся они недорого. Однако, к счастью, можно обойтись и без таких крайних мер – по очень простой причине: Вселенная стара и очень велика, а поэтому редкие события в ней происходят сплошь и рядом.
Так что отправляйтесь как-нибудь ночью на лесную поляну или в пустыню, где хорошо видно звезды, и поднимите руку к небу, соединив большой и указательный пальцы в кружок размером примерно с десятицентовик. Нацельтесь на темный участок неба, где звезд вообще не видно. В достаточно большой телескоп, которыми сегодня пользуемся мы, астрономы, на этом клочке неба можно различить около 100 000 галактик, и в каждой – миллиарды звезд. А поскольку в каждой из этих галактик раз в сто лет взрывается сверхновая, вполне можно ожидать, что за ночь на этом участке неба взорвется, скажем, три звезды.
Именно этим астрономы и занимаются. Они запрашивают время для работы на телескопе – и наблюдают то одну, то две сверхновые звезды за ночь, а иногда погода стоит пасмурная и вообще ничего не видно. Таким образом нескольким исследовательским группам удалось определить постоянную Хаббла с погрешностью менее 10 процентов. Новая величина – около 70 километров в секунду для галактик, находящихся от нас на среднем расстоянии в 3 миллиона световых лет, – почти на порядок меньше, чем получилось у Хаббла и Хьюмасона. В результате мы делаем вывод, что возраст Вселенной ближе к 13 миллиардам лет, а вовсе не к полутора миллиардам.
Как я еще покажу, эта цифра тоже полностью совпадает с независимыми оценками возраста самых старых звезд в нашей Галактике. Четыреста лет современной науки – от Браге и Кеплера до Леметра, Эйнштейна и Хаббла, от спектров звезд до распространенности легких элементов – составили яркую, непротиворечивую картину расширяющейся Вселенной. Все сходится. Картина Большого взрыва получилась очень стройной.
Глава 2. Сага о тайнах Вселенной. Космос на вес
Бывает известное известное. Это когда мы знаем, что что-то знаем. Бывает известное неизвестное. Это когда мы знаем, что чего-то не знаем. Но бывает еще и неизвестное неизвестное. Это когда мы чего-то не знаем – и не знаем, что не знаем.
Теперь, когда мы установили, что у Вселенной было начало и зародилась она в определенный момент в прошлом, который можно рассчитать, приходит на ум следующий резонный вопрос: «А чем все это кончится?»
Вообще говоря, именно этот вопрос заставил меня в свое время покинуть родное поприще – физику частиц – и углубиться в дебри космологии. В семидесятые и восьмидесятые годы XX века из детальных измерений движения звезд и газа в нашей Галактике, а также из измерений движения галактик в крупных скоплениях галактик, так называемых кластерах, напрашивался все более и более очевидный вывод, что во Вселенной есть что-то такое, чего не видно на первый взгляд – ни невооруженным глазом, ни даже в телескоп.
Главная сила, которая действует на огромном масштабе галактик, – это гравитация, поэтому измерение движения объектов на подобных масштабах позволяет исследовать гравитационное притяжение, которое управляет этим движением. Подобные измерения начались с новаторской работы американского астронома Веры Рубин и ее коллег в начале семидесятых годов XX века.
Рубин защитила диссертацию в Джорджтаунском университете, а до этого училась на вечернем отделении, пока муж ждал ее в машине, потому что водительских прав у нее не было. Она подавала документы в Принстон, в аспирантуру по астрономии, но туда до 1975 года не принимали женщин. Рубин стала второй женщиной, получившей Золотую медаль Королевского астрономического общества. Эта награда и многочисленные другие заслуженные почести достались ей благодаря революционным наблюдениям и расчетам темпа вращения нашей Галактики. Вера Рубин наблюдала звезды и горячий газ, находившиеся все дальше и дальше от центра нашей Галактики, и определила, что эти области движутся гораздо быстрее, чем в случае, если бы сила гравитации, управляющая их движением, соответствовала массе всех наблюдаемых объектов внутри Галактики. Впоследствии благодаря трудам Рубин космологам стало ясно, что объяснить это движение можно лишь одним способом – предположить, что в нашей Галактике массы гораздо больше, чем получается, если сложить массы всех этих звезд и горячего газа.
Однако в этой гипотезе была одна сложность. Те самые расчеты, которые прекрасно описывали наблюдаемую распространенность легких элементов (водорода, гелия и лития) во Вселенной, позволяют примерно судить об общем количестве протонов и нейтронов – составных частей обычного вещества. Тут все как в кулинарном рецепте, просто кухня у нас ядерная: объем получившегося блюда зависит от того, сколько в него положить каждого из ингредиентов. Если удваиваешь рецептуру – кладешь, например, четыре яйца вместо двух – и конечного продукта, в данном случае глазуньи, получится в два раза больше. Однако первоначальное количество протонов и нейтронов во Вселенной, возникшее при Большом взрыве и определенное в соответствии с наблюдаемым количеством водорода, гелия и лития, говорит о том, что вещества примерно в два раза больше, чем мы видим в звездах и раскаленном газе. Где же все эти частицы?
Придумать, где спрятать протоны и нейтроны, довольно легко – на свете полным-полно ничем не примечательных сугробов, планет и космологов, – поэтому многие физики предположили, что существуют какие-то невидимые – «темные» – объекты, в которых столько же протонов и нейтронов, сколько и в видимых. Однако если посчитать, сколько этого «темного вещества» нужно, чтобы объяснить движение вещества в нашей Галактике, мы обнаружим, что отношение общего количества вещества к видимому – вовсе не два к одному, а скорее десять к одному. Если это не ошибка, темная материя состоит не из протонов и нейтронов. Их просто не хватит.
В начале 1980 годов я был юным физиком-ядерщиком, и когда я узнал о том, что, вероятно, существует экзотическая черная материя, то пришел в восторг. Ведь из этого буквально следовало, что доминирующие частицы во Вселенной – это не старые добрые нейтроны и протоны, которых кругом навалом, а, возможно, какая-то совершенно новая элементарная частица, что-то, чего в наши дни нет на Земле, что-то загадочное, струящееся меж звезд – какой-то тайный режиссер-постановщик гравитационного балета, который мы зовем галактикой.
Однако лично меня еще больше приводили в восторг три новых направления исследований, которые потенциально могли представить природу реальности в совершенно новом свете.
1. Если эти частицы созданы при Большом взрыве, как и легкие элементы, о которых я уже писал, то мы наверняка можем опереться на представления о силах, управляющих взаимодействиями элементарных частиц (а не взаимодействиями ядер, которые важны при определении распространенности химических элементов), чтобы оценить распространенность этих неизвестных экзотических частиц в сегодняшней Вселенной.
2. Может быть, удастся вычислить общую распространенность темной материи во Вселенной на основании теоретических идей физики элементарных частиц либо, вероятно, предложить новые эксперименты по обнаружению темной материи; и то и другое покажет, сколько во Вселенной вещества в целом, а следовательно, какова геометрия нашей Вселенной. Задача физики – не изобретать то, чего мы не видим, чтобы объяснить то, что мы видим, а разобраться, как увидеть то, чего мы не видим, – увидеть то, что раньше было невидимым, известное неизвестное. Каждая новая элементарная частица-кандидат в темное вещество подразумевает новые варианты экспериментов, которые позволили бы непосредственно зарегистрировать частицы темного вещества в их шествии через Галактику: надо построить на Земле приборы, которые бы регистрировали такие частицы, когда Земля натыкается на них при движении через пространство. Если частицы темного вещества пронизывают всю Галактику рассеянными потоками, значит, они уже здесь, вокруг нас, их присутствие могут выявить наземные детекторы и можно не высматривать в телескопы далекие объекты.