Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную - Страница 10

Изменить размер шрифта:

3. Если мы сумеем выявить природу темного вещества и измерить его распространенность, то, пожалуй, сможем определить, каков будет конец Вселенной.

Последний пункт, наверное, самый интересный, поэтому начну с него. Честно говоря, я и в самом деле пошел в космологию, потому что хотел стать первым, кто узнает, чем кончится история Вселенной. Мне тогда казалось, что интереснее ничего и быть не может.

Когда Эйнштейн разрабатывал общую теорию относительности, в ее основе лежало предположение, что в присутствии вещества или энергии пространство искривляется. Эта теоретическая идея перестала быть чистой спекуляцией в 1919 году, когда две экспедиции пронаблюдали, как свет звезд огибает Солнце во время солнечного затмения – в точном соответствии с тем, как Солнце должно было искривлять пространство вокруг себя по расчетам Эйнштейна. Эйнштейн практически мгновенно прославился – и теперь его имя знают все. Принято считать, будто известность ему принесло уравнение E = mc 2, опубликованное на пятнадцать лет раньше, но это лишь распространенное заблуждение.

Так вот, если пространство потенциально искривлено, то геометрия всей нашей Вселенной сразу становится гораздо интереснее. В зависимости от общего количества вещества во Вселенной, она может существовать в геометрии трех разных типов – речь идет о так называемых открытой, замкнутой и плоской моделях Вселенной.

Вообразить, как именно выглядит искривленное трехмерное пространство, довольно трудно. Поскольку мы – существа трехмерные, нам не легче интуитивно представить себе искривленное трехмерное пространство, чем двумерным героям знаменитой книги про Флатландию – вообразить, как выглядел их мир в глазах трехмерного наблюдателя, если бы оказался искривлен наподобие, например, поверхности сферы. Более того, если искривление совсем небольшое, то трудно представить себе, как его можно обнаружить в повседневной жизни, – вот, скажем, и в Средние века многие были уверены, что Земля плоская, поскольку она выглядела плоской с их точки зрения.

Представить себе искривленные трехмерные Вселенные, повторяю, довольно трудно: вот, скажем, замкнутая Вселенная – это трехмерная сфера в четырехмерном пространстве, что само по себе звучит устрашающе. Зато их в некотором смысле легко описать. Если в замкнутой Вселенной долго-долго смотреть в одном направлении, то в конце концов увидишь собственный затылок.

Хотя эти экзотические геометрии могут показаться и чистым курьезом, и попыткой произвести впечатление в беседе, на практике их существование приводит к очень важным последствиям. Общая теория относительности недвусмысленно утверждает, что замкнутая Вселенная, чья плотность энергии определяется в основном веществом вроде звезд и галактик и в еще больше степени – экзотическим темным веществом, в один прекрасный день должна схлопнуться обратно: в сущности, это будет процесс Большого взрыва наоборот – Большой Хруст, если угодно. Открытая Вселенная будет и дальше расширяться в конечном темпе, а плоская Вселенная займет промежуточное положение – будет замедляться, но никогда не остановится. Поэтому определение количества темного вещества, а следовательно, общей плотности массы во Вселенной, обещало дать ответ на вековечный вопрос (если и не вековечный, то, по крайней мере, такой же древний, как Т. С. Элиот): чем же кончится мир – хныканьем или взрывом? Сага об определении общего количества темного вещества насчитывает уже как минимум полвека, и о ней можно написать целую книгу – честно говоря, я так и сделал, и книга называется «Quintessence» («Квинтэссенция»). А сейчас я докажу, что и в самом деле лучше один раз увидеть (картинку), чем сто (или даже сто тысяч) раз услышать (слова), – но сначала все-таки словами и только потом – картинкой.

Самые крупные объекты во Вселенной, которые держатся силой гравитации, называются сверхскопления галактик. Они состоят из тысяч, а то и больше отдельных галактик и тянутся на десятки миллионов световых лет. Большинство галактик входят в подобные сверхскопления, а наша собственная Галактика находится в сверхскоплении Девы, центр которого расположен почти в 60 миллионах световых лет от нас.

Поскольку сверхскопления такие большие и массивные, почти все вещество во Вселенной входит в какое-нибудь скопление. А значит, если мы сумеем взвесить сверхскопления галактик, а затем оценить общую плотность таких сверхскоплений во Вселенной, то получим возможность «взвесить Вселенную» вместе с темным веществом. А потом на основе уравнений общей теории относительности мы определим, достаточно ли у нас вещества, чтобы Вселенная замкнулась.

Пока все неплохо, но как взвесить объекты с габаритами в десятки миллионов световых лет? Проще простого. У нас же есть гравитация.

В 1936 году Альберт Эйнштейн по совету астронома-любителя Руди Мандла опубликовал в журнале «Science» заметку под названием «Линзоподобное действие звезды при отклонении света в гравитационном поле». В этой краткой статье Эйнштейн рассказал о примечательном явлении: само пространство может действовать как линза, искривлять и усиливать свет, в точности как линзы в моих очках для чтения.

В 1936 году нравы в научном сообществе были куда как мягче, и интересно читать, как неформально начинает Эйнштейн свою статью, опубликованную, между прочим, в авторитетном научном журнале: «Некоторое время тому назад меня навестил Р. Мандл и попросил опубликовать результаты небольшого расчета, который я провел по его просьбе. Уступая его желанию, я решил опубликовать эту заметку» (пер. А. Базя, Л. Пузикова и А. Сазыкина). Не исключено, что подобный разговорный тон не возбранялся одному только Эйнштейну, но мне приятнее полагать, что это просто продукт эпохи, когда научные результаты не всегда облекались в слова, недоступные пониманию простых смертных. Так или иначе, то, что свет описывает искривленные траектории, если само пространство искривляется в присутствии вещества, стало первым значительным прогнозом общей теории относительности и открытием, которое, как я уже упоминал, принесло Эйнштейну международную славу. Поэтому, возможно, не стоит удивляться, что, как было недавно обнаружено, еще в 1912 году, то есть задолго до того, как Эйнштейн завершил работу над общей теорией относительности, он пытался найти какое-то доступное наблюдениям явление, которое убедило бы астрономов в его правоте, и проделал практически те же вычисления, что и были изложены по просьбе мистера Мандла в статье 1936 года. Быть может, тогда, в 1912 году, он не стал публиковать свои расчеты, потому что пришел к тому же выводу, что и в статье 1936 года: «Конечно, нельзя надеяться на то, что удастся прямо наблюдать это явление». Более того, изучая его заметки обоих периодов, нельзя сказать с уверенностью, что он вообще помнил, что двадцать четыре года назад подсчитывал то же самое.

Зато он в обоих случаях прекрасно понимал, что искривление света в гравитационном поле может означать, что если яркий объект расположен далеко позади скопления массы, то свет, идущий от него в разные стороны, может огибать это скопление массы и сходиться снова, в точности как при прохождении сквозь обычную линзу, и тогда либо первоначальный объект окажется увеличен, либо получится несколько копий его изображения, причем некоторые из них будут искажены (см. рисунок ниже).

Вселенная из ничего: почему не нужен Бог, чтобы из пустоты создать Вселенную - i_007.png

Когда Эйнштейн рассчитал, как повлияет на изображение далекой звезды расположенная поблизости звезда, эффект оказался таким маленьким, что его, похоже, было и вовсе не измерить, вот почему Эйнштейн и сделал в статье такую оговорку – что едва ли удастся когда-нибудь это пронаблюдать. В результате Эйнштейн заключил, что его статья не имеет особой практической ценности. Вот как он писал об этом в письме редактору «Science»: «Позвольте также поблагодарить вас за содействие в публикации заметки, которую выжал из меня мистер Мандл. Пользы от нее никакой, зато бедняге будет приятно».

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com