Воздушно-реактивные двигатели - Страница 15

Изменить размер шрифта:

Иногда это делается путем перепуска топлива. В этом случае обыкновенный шестеренчатый топливный насос, подающий топливо к форсункам камер сгорания, подает его больше, чем нужно. Избыток топлива перепускается либо обратно в топливный бак, либо во всасывающую магистраль насоса. Барометрический регулятор управляет количеством этого перепускаемого топлива, так что к форсункам поступает только строго необходимое количество топлива в зависимости от условий полета.

Но иногда для этой цели применяется специальный плунжерный топливный насос переменной производительности. Барометрический регулятор изменяет подачу этого насоса так, что к форсункам поступает только необходимое количество топлива. Такая система регулирования нашла применение и на некоторых отечественных турбореактивных двигателях, в частности на двигателе РД-500.

Внутри плунжерного топливного насоса вращается на подшипниках ротор, в котором имеется несколько цилиндрических отверстий, просверленных под углом к его оси (рис. 30). В этих отверстиях перемещаются плунжеры — стальные цилиндрические поршеньки. Плунжеры прижимаются пружинами, заложенными в каждое отверстие ротора, к неподвижной, так называемой «косой шайбе». Это название шайба получила потому, что ее ось наклонена под некоторым углом к оси ротора. Ротор насоса получает вращение от двигателя при помощи шестеренчатой передачи. При этом плунжеры совершают поступательно-возвратное движение в своих гнездах — отверстиях ротора, засасывая и нагнетая топливо. Для изменения величины подачи топлива достаточно лишь изменить угол наклона «косой шайбы», что и осуществляется при помощи барометрического регулятора. При увеличении угла наклона «косой шайбы» подача топлива увеличивается, при уменьшении — уменьшается.

Барометрический регулятор имеет две камеры (рис. 31). Одна из этих камер анероидная, в ней заключен упоминавшийся выше анероид, являющийся «чувствительным» элементом регулятора. Другая камера регулятора, называющаяся клапанной, герметически изолирована от анероидной камеры упругой мембраной из фосфористой бронзы и заполнена топливом, на котором работает двигатель. В дне этой камеры имеются два отверстия — по одному из них (отверстие 3) топливо подводится в камеру, по другому (отверстие 1) —отводится из камеры во всасывающую магистраль топливного насоса. Отверстие 1 всегда открыто полностью, тогда как отверстие 3 частично перекрыто клапаном, связанным с рычагом, укрепленным на мембране, которая разделяет обе камеры регулятора. Один конец рычага опирается на анероид, другой может перемещаться в клапанной камере. Когда один конец рычага поднимается, то другой, естественно, опускается, так как рычаг поворачивается вокруг точки опоры на мембране. Значит, когда анероид по какой-либо причине сжимается, например, при уменьшении высоты или увеличении скорости полета, то опирающийся на него конец рычага поднимается. Противоположный конец рычага, расположенный в клапанной камере регулятора, опускается, уменьшая отверстие для входа топлива в эту камеру, что и используется для изменения производительности насоса.

Воздушно-реактивные двигатели - i_037.png

Рис. 30. Схематический разрез и конструкция топливного насоса переменной производительности для подачи топлива в камеры сгорания турбореактивного двигателя РД-500

Воздушно-реактивные двигатели - i_038.png

Рис. 31. Барометрический регулятор турбореактивного двигателя РД-500:

а —разрез; б — схема гидравлических связей с топливным насосом; в — конструкция

В корпусе насоса имеется цилиндрическая полость, в которой находится поршень с пружиной. Это — сервомеханизм, служащий для поворота «косой шайбы». Дело в том, что усилие, необходимое для поворота «косой шайбы», так велико, что создать его сразу в регуляторе оказывается невозможным. Для этой цели служит особый исполнительный элемент — сервомеханизм, поршень которого связан тягой с «косой шайбой». Когда поршень под действием пружины выдвигается из полости, в которой он находится, то угол наклона «косой шайбы» увеличивается, в результате чего производительность насоса растет.

Топливо, заполняющее полость сервомеханизма, вытекает из нее по трубке 3 (см. рис. 31,б) в клапанную камеру регулятора. Обе полости сервонасоса соединены между собой обводным каналом с находящимся в нем калиброванным отверстием — жиклером. Если давление топлива, протекающего через этот жиклер, уменьшится по какой-либо причине, то силы, действующие на поршень слева и справа, окажутся неодинаковыми. Избыточное давление на поршень при этом уравновесится пружиной, создающей необходимую добавочную силу.

Стоит анероиду регулятора слегка сжаться, что происходит при незначительном увеличении скорости или уменьшении высоты полета, как тотчас же клапан прикроет отверстие 3 и выход топлива из полости сервомеханизма уменьшится. Давление топлива в полости, в которой находится пружина, при этом немедленно возрастет и суммарное давление топлива и пружины превысит давление топлива на противоположную сторону поршня. Поршень выдвинется из полости, наклон «косой шайбы» увеличится, а следовательно, увеличится и производительность насоса: в камеры сгорания будет подаваться больше топлива.

Так регулятор поддерживает нужный состав топливовоздушной смеси, сгорающей в двигателе, чтобы сохранить постоянным его число оборотов (рис. 32).

Но барометрический регулятор выполняет не только эту одну функцию. Он обеспечивает более надежную работу двигателя, являясь в то же время предохранительным устройством, ограничивающим давление топлива в нагнетающей магистрали насоса. Необходимость в таком устройстве очевидна. Нормальное давление топлива, подводимого от насоса к топливным форсункам, обычно составляет несколько десятков атмосфер. На это давление и рассчитываются топливные трубопроводы. Но представьте себе, что по какой-либо причине, например из-за загрязнения, произойдет местное сужение проходного сечения трубопровода. Плунжерный насос будет проталкивать через суженное отверстие прежнее количество топлива, что приведет к резкому увеличению давления топлива в трубопроводе перед сужением. В результате этого трубопровод может лопнуть, что может повлечь за собой пожар на самолете. Чтобы давление топлива в трубопроводе не превосходило некоторой максимально допустимой величины, нужно уменьшить производительность насоса, как только давление достигнет этого предела. Эту функцию и выполняет барометрический регулятор. Если давление топлива, подаваемого насосом, превысит допустимый предел, немедленно прогнется мембрана 4 (рис. 33), изготовленная из упругой резины и помещенная в дне клапанной камеры регулятора. К этой мембране топливо подводится по особой трубке (трубка 2 на рис. 31,б). Прогнувшись, мембрана надавит на поршенек и поднимет иглу, упирающуюся в рычаг, расположенный в клапанной камере. Приподнявшись, рычаг увеличит выход топлива в клапанную камеру регулятора из полости сервомеханизма топливного насоса, как это происходит, например, при увеличении высоты полета.

Воздушно-реактивные двигатели - i_039.png

Рис. 32. Так система регулирования турбореактивного двигателя РД-500 сохраняет постоянство числа оборотов при изменении высоты полета

Пусть высота полета увеличится. Тогда: анероид 1 — расширится; рычаг 2 — приподнимется, в клапанную коробку регулятора через отверстие 3 станет поступать больше топлива из полости сервомеханизма насоса, давление в полости 4 сервомеханизма насоса уменьшится; поршень 5 сервомеханизма передвинется вправо; угол наклона «косой шайбы» 6 уменьшится. В результате этого подача топлива в камеры сгорания уменьшится, вследствие чего число оборотов двигателя, которое с увеличением высоты полета растет из-за увеличения температуры газов, упадет до первоначального значения

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com