В делении сила. Ферми. Ядерная энергия. - Страница 29

Изменить размер шрифта:
В делении сила. Ферми. Ядерная энергия. - img_66.jpg

Ряд распада от фермия-257 до нелтуния-237.

ЭЙНШТЕЙНИЙ И ФЕРМИЙ

Взрыв водородной бомбы «Майк» на атолле Эниветок 1 ноября 1952 года повлек за собой не только разрушения. Хоть это и сохранялось в тайне до 1955 года, уже в декабре 1952-го анализы остатков, проведенные в лаборатории Беркли, показали, что водородная бомба добавила в периодическую таблицу два новых элемента. Они имели атомные номера 99 и 100 и были названы эйнштейнием и фермием соответственно.

Ферми не дожил до того момента, когда элемент с номером 100 был назван его именем, но его существование он предсказывал еще в 1934 году, говоря о трансурановых элементах. Фермий и эйнштейний относятся к семейству актиноидов, и многие его члены не встречаются в природе. Среднее время жизни эйнштейния немногим превышает 20 дней, а фермия — 100, оба эти элемента радиоактивные. Облучение урана-238 огромным потоком нейтронов водородной бомбы привело к появлению тяжелейших изотопов, таких как уран-253 и уран-255, которые в результате бета-распада дали соответственно эйнштейний-253 и фермий-255. Длинные ряды распадов новых элементов, эйнштейния и фермия, были подробно изучены в последующие годы (см. рисунок). Пока работы, ведущиеся в Беркли, были еще совершенно секретными, в мае 1954 года исследовательская группа из Нобелевского института в Стокгольме независимо получила изотоп фермия-250 путем бомбардировки урана-238 изотопами кислорода-16. После смерти Ферми и Эйнштейна и после публикации группой Беркли некоторых результатов международное научное сообщество единогласно решило назвать элемент 99 эйнштейнием, а элемент 100 — фермием.

БОЛЬШИЕ СОВРЕМЕННЫЕ УСКОРИТЕЛИ

Через год после смерти Ферми американский физик Сэмюэл Аллисон, также работавший над Манхэттенским проектом, решил переименовать Чикагский институт ядерных исследований в Институт Энрико Ферми. Сегодня он остается одним из передовых центров изучения физики и вместе с другими организациями является частью холдинга, который использует Фермилаб — бывшую Национальную ускорительную лабораторию, названную так в честь Ферми в 1974 году. В Фермилабе находится второй по величине ускоритель частиц после большого адронного коллайдера (или БАК) Европейской организации по ядерным исследованиям (ЦЕРН) в Женеве. Этот ускоритель — одно из важнейших достижений человеческого разума. Он стал продолжением беватрона Беркли и Брукхевенского космотрона, созданного Ферми.

Если беватрон был назван так потому, что в нем можно было получить энергию в миллиарды электронвольт (эВ), то в тэватроне Фермилаба достигаются тераэлектронвольты (ТэВ), то есть 1012 эВ. Благодаря этой невероятной мощи ускорителей сегодня мы можем обнаружить пучки таких маленьких частиц, как нейтрино, с ничтожной массой, примерно в 5 эВ, и разглядеть квантовую структуру материи.

УСКОРИТЕЛЬ ФЕРМИЛАБА

Первым ускорителем Фермилаба был генератор Кокрофта — Уолтона, который трансформировал переменную электрическую энергию в постоянную, вырабатывая ионы водорода Н-. На их основе с помощью магнетрона создается плазма, или ионизированный газ с низким давлением. Затем посредством электрического поля в 750 КэВ ионы ускоряются до линейного ускорителя (LINAC, Linear Accelerator), который увеличивает энергию частиц до 400 МэВ, после чего они попадают в угольный фильтр, трансформирующий ионы Н- в протоны Н+ и в промежуточное кольцо (бустер) диаметром в 468 м. В нем протоны вращаются со скоростью примерно 20 тысяч раз за 33 миллисекунды и благодаря эффекту циклотрона приобретают на каждом круге энергию, пока не достигнут 8 ГэВ. Следующий этап — главный инжектор, который ускоряет протоны, разделяет протоны для получения антипротонов и затем ускоряет антипротоны. Таким образом, в главном инжекторе находятся два отдельных пучка: протоны и антипротоны, которые двигаются в противоположном направлении и попадают в последний ускоритель, мощный Тэватрон. В нем скорость частиц почти равна скорости света. Они сталкиваются в центре детекторов DZER0 и CDF с энергиями почти 2 ТэВ, что позволяет получить пучки разных элементарных частиц. Сегодня в Фермилабе проводятся эксперименты по обнаружению бозона Хиггса, которые должны подтвердить эксперименты ЦЕРН и изменить наше представление о квантовой вселенной.

В делении сила. Ферми. Ядерная энергия. - img_67.jpg

Не так давно в ускорителях были проведены два эксперимента, которые имели огромное значение для теоретической физики и потрясли научное сообщество: связаны они были с возможным открытием нейтрино, чья скорость превышает скорость света, и обнаружением бозона Хиггса. Эти предполагаемые нейтрино движутся со скоростью, превышающей скорость света. Если это так, то теория относительности Эйнштейна нуждается в переработке: ведь нейтрино обладают массой, пусть и очень маленькой, и согласно этому открытию, скорость света больше не является предельной для материальных частиц. Нейтрино — это фермионы, окружающие нас, хотя мы не можем воспринимать их органами чувств. Наше тело производит примерно 4000 нейтрино в секунду, миллионы миллиардов нейтрино попадают на Землю из космоса и проходят через нас, при этом не взаимодействуя с нами. Они не относятся ни к одному атому или ядру, мы словно погружены в бульон из частиц. Существуют электронные, мюонные и таонные нейтрино — результат распада электрона, мюона или таона. Нейтрино — единственные лептоны, которые не подвержены сильному взаимодействию и не имеют заряда.

Итак, в эксперименте OPERA от ускорителя ЦЕРН в Женеве под землей (чтобы минимизировать интерференцию) был пущен пучок нейтрино до итальянской лаборатории в Гран Сассо, на расстояние 732 км. Сначала казалось, что нейтрино двигаются со скоростью, превышающей скорость света, но в феврале 2012 года в измерениях были обнаружены две ошибки, из-за которых результаты эксперимента были признаны недействительными. Стоит упомянуть, что в таких случаях требуется точность до миллионной доли секунды и используются системы типа GPS. Пока идет опыт, Земля вращается, хоть и совсем немного, поэтому чрезвычайно важно идеально синхронизировать системы измерений в лабораториях. Тем не менее вероятность того, что скорость нейтрино может превышать скорость света, изучается.

После еще одного эксперимента, взволновавшего научный мир и общественное мнение, 4 июля 2012 года ЦЕРН обнародовала официальный доклад, в котором говорилось, что в ходе экспериментов CMS и ATLAS с высокой долей вероятности была найдена частица, похожая на бозон Хиггса стандартной модели, массой примерно 125 гэВ.

Бозон Хиггса — это частица, существование которой в 1964 году предположил британский физик Питер Хиггс (р. 1929) и названная в его честь. Считается, что она поможет нам объяснить, почему материя обладает массой. Эта частица связана с полем Хиггса, в которое — теоретически — погружена вся наша Вселенная. Таким образом, частицы, не обладающие массой, как фотоны, не взаимодействуют с ним, а частицы с массой — взаимодействуют, и чем сильнее их взаимодействие с полем Хиггса, тем больше их масса. Но есть и другие версии этого механизма, объясняющие обладание массой, в которых говорится о целых семьях частиц, а не только об одном бозоне Хиггса, поэтому для окончательного ответа ученые должны получить больше данных. На данный момент с помощью статистических методов они приблизились к промежутку, в котором точно (с вероятностью 95 %) нет бозона Хиггса или какой-либо другой частицы, связанной с полем Хиггса (считается, что надо отбросить промежуток энергий между 110-112,5 гэВ и 127- 600 гэВ). Это отбрасывание возможных результатов задачи так привлекало Ферми: если бозон Хиггса существует, то он окружен, если существует другая похожая на него частица — она тоже окружена. Бозон Хиггса стал своего рода легендой, особенно после того, как в 1993 году американский физик Леон Ледерман (р. 1922) выпустил научно-популярную книгу, в которой назвал его «частицей Бога». Если существование бозона будет подтверждено, то список элементарных частиц стандартной модели будет полным — именно об этом мечтал Ферми, когда начинал составлять карту нашей квантовой вселенной.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com