"Теорія та методика навчання математики, фізики, інформатики. Том-1" - Страница 43
(1)
Завдяки інваріантності відносно обертання навколо восі, яка проходить через ядро й паралельна полю В, z-компонента орбітального моменту L z =hМє величиною, що зберігається. У циліндричній системі координат (Oz|| В) з врахуванням залежності хвильової функції від куту повороту φнавколо восі z(), рівняння Шредінгеру має вигляд (в атомних одиницях):
(2)
Двомірне рівняння (2) не розв’язується аналітично (член кулонівської взаємодії з не дозволяє розділити змінні), тому в роботі розвинуто нову скінченно-різницеву схему його розв’язання. При різницевому розв’язанні нескінчена область замінювалася прямокутною областю: 0 <
Для розрахунку ширин резонансів у магнітному полі узагальнено метод операторної теорії збурень ОТВ (Glushkov-Ivanov, 1992 [5]). Ширина Г резонанса:
Г/2(3)
з повним гамільтоніаном (2), Eb -функції дискретного спектру, Ec -функції станів континуума. Далі розглянуто застосування нового підходу до розрахунку енергетичних та статистичних властивостей спектру резонансів в атомі водню у магнітному полі й з’ясування особливостей та механізму стохастизації у системі. Крім мети апробації нового методу взагалі, ми виконали розрахунки з метою відтворити та докладно пояснити результати експериментів Клеппнера та співр. (Масачусетський технологічний інститут), в яких спостерігався ефект хаосу в атомі водню у магнітному полі з індукцією 6Тл (див. [2–4]). Ми проводили розрахунок енергій та ширин резонансів в атомі водню для декількох інтервалів значень індукції магнітного поля, у тому числі, значення, яке використано в експерименті Клеппнера та співр. Аналізувалися повністю збіжні серії резонансів в інтервалах енергії: [( n–0.5) , ( n–0.3 ] для n=1, 2, 3, 4. Рідбергівські серії резонансів збігаються до границі іонізації Ландау: E ion(n )=(n +1/2) . Густина станів для кожного каналу Ландау, згідно з нашими аналізом, складала ~35 резонансів на см -1, що погоджується з експериментальними значеннями ~30 резонансов на см -1, а також даними, які отримані на підставі оцінок в межах моделі комплексних коордінат (МКК; Delande-Dupret, 1995) та адіабатичному наближенні ОТВ (АОТВ: Ambrosov-Glushkov, 1998): ~40 резонансов на см -1. Середня ширина резонансу, згідно з нашим розрахунком, складає 0.005 см -1, що також погоджується з експериментальними даними Клеппнера та співр.: 0.004–0.006 см -1й оцінками в моделях МКК й АОТВ: 0.006–0.007 см -1. З фізичної точки зору, наявність у спектрі атому водню у магнітному полі багаточислених резонансів з малими та аномально малими ширинами пояснюється в межах квантової теорії хаоса. Їх виникнення обумовлено не схованою симетрією або феноменом локалізації, а має місце внаслідок випадкових інтерференційних явищ й флуктуацій, притаманних взагалі хаотичним системам.
В роботі також вперше розроблено новий квантовий підхід до розрахунку структури й статистичних властивостей енергетичних спектрів некулонових (багатоелектронних) атомних систем у статичному магнітному полі у регулярній й хаотичній областях, який базується на скінченно-різницевому розв’язанні 2D рівняння Шредінгера з некулоновим потенціалом для багатоелектронної атомної системи і ОТВ (2D-ОТВ). Крім того, додатково вперше чисельно реалізовані адіабатичні моделі розрахунку структури рівнів Н-подібних й некулонових атомних систем у полі, які є ефективними лише у граничному випадку (в інших випадках точність не є достатньою, тому більшість розрахунків проведено методом 2D-ОТВ). У випадку багатоелектронної системи рівняння Шредінгера для одноелектронних функцій записуються (у хартрі-фоківському наближенні) у вигляді:
(4)
де V c ( r) – потенціал, який додано до кулонівського й описує самопогоджене поле, в якому рухається електрон. В якості потенціалу V свикористовувався потенціал Гріну. Для розв’язання рівняння (4) використана скінченно-різницева схема. Інтегрування по куту у виразах для кулонівського, кореляційного та обмінного потенціалів приводить до інтегралів у координатах ( , z), які містять еліптичні К и Е (розраховані шляхом чисельного інтегрування по вузлам сітки). Вперше в теорії схема розрахунку включала обмінно-кореляційні потенціали для вурахування міжелектронних кореляцій, які є важливими у випадках малих та проміжних значень магнітного поля). Слід відзначити, що до теперішнього часу надійні дані по енергетичним характеристикам атомних систем у магнітному полі практично відсутні. Отримані результати є дуже важливими, але їх точність з-за неврахування кореляцій й ряда інших факторів не може вважатися достатньо високою. На підставі нової чисельної моделі ми виконали докладні розрахунки структури енергетичних рівнів нейтральних та одноразово іонізованих атомних систем (із зарядом ядра Z=2–10) у статичному магнітному полі в интервалі змінення параметра магнітного поля: =B/Bo=0.01–10000; атомні одиниці). Розрахунки та аналіз структури енергетичних рівнів нейтральных та одноразово іонізованих атомів з Z=2–10 у магнітному полі показали, що залежність енергії рівнів від параметра магнітного поля має надто складний характер. Розраховані значення параметра магнітного поля, які відповідають багаточисельним перерізам рівнів (особливо висока їх інтенсивність у інтервалі енергій та значень поля, що відповідають порівняній величині взаємодії електрону з кулонівським та магнітним полем). Зокрема, в таблиці 1 наведені результати наших розрахунків енергій станів та значень параметра магнітного поля, яке відповідає найбільш інтенсивним перерізам енергетичних рівнів (системи: Ве-О).
Таблиця 1.
Енергії й параметр магнітного поля, які відповідають точкам перерізів енергетичних рівнів .
Z
Атомний стан (s)
– E( А) (ат.од.)
4
4.62
15.95827
4.576
15.95922
5
8.402
28.35029
8.345
28.34844
7
36.880
84.4892
30.563
79.41924
17.475
66.80315
17.411
66.77028
8
64.760
130.88013
55.810
124.28135
23.342
94.56914
24.521
94.50018
Особливо складна й нерегулярна структура енергетичних рівнів має місце в атомах вуглецю та неона. Для атома Ne у магнітному полі розрахунок показав, що переріз кривих енергії станів |0 N > та |2 p 0> має місце при =161.315, станів |2 p 0> й |1 s 2> при =41.980. Докладний аналіз структури рівнів атома C у залежності від параметра магнітного поля (S z=–2) показав, що із зменьшенням (із області великих значень В) конфігурація