Тайны пола. Мужчина и женщина в зеркале эволюции - Страница 6
Аналогично самому половому размножению, партеногенез возникал в животном царстве неоднократно. Причин, по которым такой тип размножения встречается достаточно редко, – две. Во-первых, партеногенетические формы эволюционируют медленнее форм с нормальным половым размножением; во-вторых, партеногенетические формы демонстрируют повышенную устойчивость к накоплению вредных мутаций. Подсчеты показывают, что шансы возникновения двух адаптивных мутаций у одного организма примерно в 250 раз выше, если он принадлежит к популяции, практикующей половое размножение. Поэтому, когда популяция вынуждена приспосабливаться к новым условиям среды, половое размножение имеет неоспоримые преимущества: половое размножение ведет к возникновению большего разнообразия в пределах популяции, и какие-то из этих вариантов могут оказаться более жизнеспособными в новых условиях.
Одно из объяснений преимущества полового размножения дает теория Г. Мюллера, известная под именем Мюллеровско-го механизма устранения колебаний (Muller's ratchet). Теория предполагает, что путем полового размножения можно более эффективно избавляться от вредных мутаций. При бесполом размножении негативные мутации постепенно накапливаются в пределах конкретной линии. А. С. Кондрашов дополнил модель Г. Мюллера, введя представление об эффекте накопительного усиления негативного действия вредных мутаций. Представим себе два генных локуса с нормальными аллелями А и В и вредными мутантными аллелями а и в. Генотип нормальной особи будет АВ. Гетерозиготы по каждому из мутантных аллелей (Ав и Ва) будут обладать меньшей приспособленностью, а сочетание ав окажется летальным. У популяций, практикующих бесполое размножение, генотипы Ав или Ва могут получить широкое распространение в популяции, но при этом летальные генотипы ав будут возникать крайне редко. В то время как в популяции, практикующей половое размножение, подобные летальные генотипы будут воспроизводиться регулярно и эффективнее отсекаться отбором (Рис. 1.3). При возникновении большого количества негативных мутаций, в условиях полового размножения отсекается существенно больше летальных комбинаций и избирательная элиминация фиксированной пропорции носителей летальных генов идет быстрее и эффективнее.
Рис 1.3. Эффект Кондрашова.
Число вредных мутаций, приходящихся на одну особь в популяции, размножающейся путем полового отбора выше, чем в популяции, практикующей бесполое размножение. В условиях полового размножения из популяции будет вымываться больше вредных мутаций, чем при бесполом размножении путем селективной элиминации. (Дано по Majerus, 2003).
Глава 2. Детерминация пола и факторы его определяющие
Почему рождаются самцы или самки
У большинства животных пол детерминирован генетически на хромосомном уровне и, если в процессе индивидуального развития не происходит никаких сбоев, внешние признаки пола находятся в соответствии с генетическими предсказаниями.
У человека и других млекопитающих, некоторых видов насекомых (например, у плодовой мушки дрозофилы или водяного клопа Ligaeus) пол определяется X и Y-хромосомами. Самки гомогаметны и имеют набор из двух парных XX-хромосом, а у самцов половые хромосомы непарные XY. У многих видов млекопитающих, включая человека, развитие мужского пола детерминировано присутствием специфической области на Y-хромосоме, получившей название SRY. Однако даже среди млекопитающих есть исключение из этого правила. Недавно было показано, что два вида кротов утратили Y-хромосому и прекрасно без нее обходятся. У одного из них оба пола имеют только одну непарную X-хромосому, а у другого, напротив, оба пола имеют набор из двух X-хромосом. Другой тип определения пола встречается у некоторых бабочек, червей и водяного клопа Protenor: Для самцов в этом случае типично наличие ХО-хромосом, а для самок ХХ.
Пол, впрочем, не всегда определяется системой XY. У птиц, некоторых бабочек и земноводных половая принадлежность детерминирована системой ZW. В этом случае ситуация с парными хромосомами прямо противоположна той, которая описана у млекопитающих – гетерогаметным (т. е., обладающим разными половыми хромосомами) является женский пол. Самцы имеют парный набор ZZ-хромосом, а у самок половые хромосомы непарные – ZW или ZO.
Соотношение половых хромосом и аутосом как фактор определения пола
Ученые уже в первой половине XX века активно обсуждали вопрос о том, что же лежит в основе определения пола. Широкую известность получила балансовая теория К. Бриджеса. По мнению американского генетика, не присутствие двух Х-хромосом определяет женский пол, и не наличие Y-хромосомы определяет мужской пол. Решающим для определения пола оказывается баланс между числом половых хромосом и набором аутосом. Проводя эксперименты с дрозофилами, К. Бриджес обнаружил, что особи с триплоидным набором хромосом (3Х: 3А) были самками, как и обычные диплоидные самки (2Х: 2А). Самками оказались также и мушки с набором хромосом (2Х + Y): 2А. Во всех трех вариантах отношение числа Х-хромосом к числу аутосом было равно 1. Наличие мужской Y-хромосомы не повлияло на нормальное развитие самки. Дрозофилы с хромосомным набором ХY: 2А были нормальными самцами (отношение числа Х-хромосом к числу аутосом составляет 0,5). А мушки, у которых отношение числа Х-хромосом к числу аутосом варьировало между 0,5 и 1 (варианты: 2Х: 3А; (2Х + Y): 3А) сочетали в своей морфологии мужские и женские черты. В случае, когда число наборов аутосом увеличивалось до трех, при наличии одной Х-хромосомы, происходило развитие сверхсамца. Такой организм обладал гипертрофированными признаками мужского пола, но при этом был стерильным. Аналогичным образом, увеличение числа Х-хромо-сом при диплоидном наборе аутосом (3Х: 2А) приводило к формированию сверхсамки, с выраженными нарушениями репродуктивной функции.
У человека и других млекопитающих балансовая теория пола не работает. Ключевую роль в этом случае играет Y-хромосома. Если таковая отсутствует, то при любом числе Х-хромосом формируется женская особь. В присутствии же Y-хромосомы, даже при наличии трех и четырех Х-хромосом формируется мужская особь.
Y-хромосома обладает целым набором специфических черт. Она содержит в себе гораздо меньше генов по сравнению с другими хромосомами и богата повторяющимися блоками нуклеотидов и гетерохроматиновыми районами. На Y-хромосоме имеется область гомологичная с Х-хромосомой, называемая псевдоаутосомной областью. Кроме того, значительная часть генов на Y-хромосоме имеет аналоги на Х-хромосоме. Это касается также и генов, связанных с определением пола (SOX3/SRY, SMCX/SMCY, ZFX/ZFY и др.).
Y-хромосома составляет лишь около 2–3% гаплоидного генома. Однако у человека кодирующей способности ее ДНК хватило бы на несколько тысяч генов. В реальности объем генетических функций Y-хромосомы не слишком велик. У мышей ее фенотипическое влияние ограничено весом семенников, секрецией тестостерона и серологического H-Y-антигена, чувствительностью органов к андрогенам и сексуальным поведением. По словам известного отечественного специалиста в области генетики индивидуального развития члена-корреспондента РАН Л. И. Корочкина Y-хромосома – единственная хромосома в геноме млекопитающих, которая не работает непосредственно на реализацию фенотипа. Ее значимость состоит лишь в контроле гаметогенеза и первичной детерминации пола.
Молекулярно-генетические основы детерминации пола млекопитающих
Бурно развивающиеся в последние десятилетия исследования в области молекулярной генетики существенным образом расширили наши представления о молекулярно-генетических основах детерминации пола млекопитающих. Стало очевидным, что половая дифференцировка происходит в соответствии с двумя правилами. Первое правило, сформулированное в 60-е годы XX века А. Жостом, выглядит следующим образом: специализация развивающихся гонад в семенники или яичники определяет последующую дифференцировку эмбриона. Происходит это по той причине, что семенники секретируют тестостерон – фактор, ответственный за маскулинизацию плода. Вторым фактором выступает антимюллеровский гормон, контролирующий непосредственно анатомические преобразования. Второе правило определения пола у млекопитающих: Y-хромосома несет генетическую информацию, необходимую для детерминации пола у самцов.