Тайны мировой истории. Трагедии и мифы человечества - Страница 2
Эта схема хорошо объясняла, почему все планеты Солнечной планеты лежат в плоскости эклиптики и движутся в одном направлении. Кроме того, теория Канта-Лапласа позволяла определить сравнительный возраст планет. Считалось, что более удаленные от Солнца планеты имеют более почтенный возраст, поскольку за счет центробежной силы удалились и сформировались раньше. На базе этого допущения выросло целое направление в фантастической литературе, в котором принято было описывать Марс как древнюю планету с высокоразвитой цивилизацией, а, скажем, Венеру – как мир динозавров.
Однако эта стройная и общепринятая теория тоже имела свои слабые стороны, которые отчетливо проявились к середине XIX века. В 1859 году Джеймс Максвелл математически доказал, что превращение кольца в планету невозможно. Дополнительно к этому оказалось, что Солнце и планеты по схеме Канта-Лапласа должны вращаться совсем не так, как это происходит в действительности.
Ученые стали искать другие возможные пути возникновения Солнечной системы.
Английский астроном Джеймс Джинс выдвинул идею о так называемом «катастрофическом образовании» нашего мира. Допустим, говорил он, что миллиарды лет назад некая массивная звезда прошла сравнительно недалеко от молодого Солнца. Что же могло произойти во время такого сближения? Подобно океанским приливам, происходящим в системе Земля-Луна, приближение массивной звезды вызывало грандиозные приливы в огненной атмосфере Солнца. Высота этих приливов достигала многих тысяч километров. И, наконец, в точке максимального сближения произошла великая космическая катастрофа: огромный протуберанец вырвался из Солнца и образовал сигарообразную нить раскаленного газа, которая впоследствии распалась на капли, подобно тому как облако пара, остывая, образует отдельные капли воды. Некоторая часть протуберанца могла быть захвачена проходящей звездой, но часть вещества осталась в сфере гравитационного воздействия Солнца, и именно из этой части образовались известные нам планеты.
Параллельно в научных кругах обсуждалась «планетезимальная» гипотеза, согласно которой крупные сгустки вещества выбрасывались во время извержений с поверхности Солнца, усиливающихся при сближении с другой звездой. Выброшенное из Солнца вещество быстро остывало. Из него возникало большое число отдельных тел, называемых планетезималями и двигающихся независимо друг от друга по произвольным орбитам вокруг Солнца. Затем при столкновениях этих тел возникали зародыши планет – более крупные тела, которые притягивали к себе другие планетезимали, и в конце концов образовались планеты.
Но и эти «катастрофические» теории не описывали всех явлений, наблюдаемых в Солнечной системе.
Начало новому направлению в планетной космогонии было положено исследованиями советских ученых и в особенности работами школы академика Отто Шмидта. Значительный вклад в эту теорию был внесен также известным шведским физиком Ханнесом Альвеном. Однако конечный вид новая гипотеза о происхождении Солнечной системы приобрела в формулировке английского астрофизика Фреда Хойла, а потому стала называться его именем.
Гипотеза Хойла в известной степени явилась возвращением к схеме Канта-Лапласа. Но если теория Канта-Лапласа основывалась главным образом на законах механики, то новые теории впитали в себя современные достижения астрофизики и электродинамики.
Рассмотрим, как по гипотезе Хойла формируется типичная планетная система на примере нашего мира.
Вернемся на пять миллиардов лет назад и посмотрим, что же происходило с вращающейся шаровой туманностью. Правда, в отличие от горячей туманности Канта и Лапласа, наша туманность холодная. При вращении она постепенно сплющивалась и превращалась в диск с шарообразным утолщением в центре.
В начальную эпоху и температура, и плотность вещества в туманности были очень низки, но с течением времени плотность ее центральной части увеличивалась, пока в середине диска не зажглось Протосолнце. Размер первичной туманности при этом был порядка нескольких световых лет.
Протосолнце постепенно сжималось под действием собственного гравитационного поля, и, когда его радиус стал равным десяти сегодняшним, внутренняя температура повысилась настолько, что началась термоядерная реакция сгорания дейтерия.
Несколько раньше, еще до ядерных реакций, на начальных стадиях сжатия произошло резкое увеличение температуры и светимости Солнца. Температура наружных слоев протозвезды достигла 50 тысяч градусов, а светимость увеличилась в 400 раз.
Звезды, находящиеся в такой стадии развития, принято называть звездами типа Т-Тельца. После стадии Т-Тельца светимость Протосолнца уменьшилась, и Солнце стало стабильной звездой.
Протопланетный диск, вращающийся вокруг Протосолнца, должен был разделиться на большое число отдельных сгущений, которые двигались по близким орбитам и поэтому очень быстро росли за счет взаимодействия друг с другом.
Сначала сгущения представляли собой смесь чрезвычайно разреженного газа и пыли. В результате соударений, а также процессов объединения и слипания плотность их увеличивалась. За сравнительно непродолжительный промежуток времени центральные части сгущений превратились в сплошные тела. Так, на расстоянии орбиты Земли этот интервал времени составил всего 10 тысяч лет, а на расстоянии от Юпитера до Солнца – миллион лет. Таким образом, первичные сгущения в туманности положили начало образованию роя сплошных тел, который впоследствии и привел к возникновению планет.
Рис.1. Эволюция протопланетного облака (схема)
На определенной стадии появился «зародыш» нашей планеты (протопланета), который стал «вычерпывать» пыль в своем районе. Зародыш Земли по своим размерам не превышал Луну. А твердые тела в протопланетном облаке достигли линейных размеров порядка десятков километров. Можно представить, что происходило при столкновении десятикилометрового тела (камня!) с зародышем Земли при скорости порядка 10 километров в секунду! Большая часть падающего тела просто испарялась при ударе, но масса зародыша была достаточно большой, и вещество не могло улететь в космическое пространство. Зародыш увеличивался, постепенно наращивая свою массу. Кстати говоря, впервые именно Шмидт высказал мысль о том, что ударные процессы могли положить начало образованию атмосферы и океана еще до того, как закончилось формирование Земли.
Рис.2. Молодая планета в протопланетном облаке
Сколько же времени мог занять процесс образования Земли? Здесь мнения ученых сильно расходятся: одни называют промежуток времени в 100 миллионов лет, другие – в 1000 лет.
Гипотеза Хойла так и оставалась бы гипотезой, существующей наравне со многими другими, однако новые методы наблюдений и принципиально новые инструменты позволили современным астрономам своими глазами увидеть протопланетные диски у молодых звезд.
«Семена жизни»
Ученые уже неплохо представляют себе, как формируются планеты и планетные системы. Однако важно еще и понять, на какой стадии эволюции небесных тел начинается эволюция жизни, в какой момент происходит ее зарождение.
Гипотезу о том, что «зародыши жизни» существуют везде во Вселенной и время от времени выпадают на планеты, первым сформулировал шведский химик и один из первых лауреатов Нобелевской премии Сванте Аррениус. Он назвал такой путь возникновения и развития жизни на планетах «панспермией».
Критику эта гипотеза вызывала прежде всего тем, что в ней не давалось ответа на вопрос о происхождении самих зародышей. Тем не менее в ХХ веке она начала подтверждаться. При исследовании радиоастрономическими методами газопылевых облаков в Галактике в них было обнаружено несколько типов органических соединений. Такое открытие тем более удивительно, что раньше в газопылевых облаках предполагалось лишь присутствие водорода и некоторого числа двухатомных соединений.