Тайны космоса - Страница 11
ЧТО СЛЫШНО?
В космосе можно очень многое увидеть. Но еще больше, как ни странно, услышать…
Кто шумит? Радисты еще в начале нашего века обнаружили, что время от времени в их передачи вмешиваются некие посторонние сигналы, порой такой мощности, что напрочь забивают передатчик; из приемника невозможно услышать что-либо, кроме хрипов и шумов. Разобраться, кто хулиганит, в 1931 году поручили молодому американскому инженеру Карлу Янскому.
Заинтригованный Янский соорудил остронаправленную антенну и, поворачивая ее, вскоре понял, что в поисках «радиохулиганов» попал, что называется, пальцем в небо. В самом буквальном смысле — источник загадочных радиосигналов находился у него над головой. Им оказалось… Солнце. Ну а ночью подобные же сигналы исходили из протяженной области звездного неба, визуально совпадавшей с Млечным Путем.
Так экспериментально была открыта новая область астрономии, изучающая не оптическую, но радиочасть электромагнитного спектра.
В 1946 году исследователи обнаружили первый отдельный радиоисточник в созвездии Лебедя, а еще два года спустя — в созвездиях Девы и Центавра. Газеты запестрели заголовками: «Кто сигналит из иной галактики?», «Собратья по разуму шлют привет!» и даже: «Принята телеграмма из космоса. О ее содержании читайте в следующем номере…» На самом же деле, как вскоре выяснили ученые, эти радиоисточники имеют природное происхождение. Причем излучают как целые галактики, так и отдельные небесные тела. Скажем, квазарами в 60-х годах нашего века стали называть компактные источники космического радиоизлучения, наблюдаемые через обычные оптические телескопы в виде слабых голубых звездочек. В 1963 году американскому астроному М. Шмидту удалось расшифровать оптический спектр квазара ЗС 273, определив таким образом расстояние до него. Оно оказалось в 1300 раз больше дистанции до ближайшей к нам галактики — туманности Андромеды.
«Маяки» в космосе. В 1968 году английскими астрономами были обнаружены и первые пульсары. Наученные предыдущим опытом исследователи не стали вот так сразу приписывать им искусственное происхождение, хотя на сей раз, казалось, на то имелись все основания. Дело в том, что пульсары не зря получили свое название: радиоизлучение от них имеет тенденцию периодически меняться как по частоте, так и по интенсивности сигнала. Словом, налицо признаки вроде бы искусственной модуляции сигнала.
Тем не менее и этому феномену со временем было найдено вполне естественное объяснение. Ныне многие исследователи полагают, что звезда-пульсар быстро вращается вокруг собственной оси, а на ее поверхности есть некая область, испускающая излучение. Оно выбрасывается в пространство узким пучком и при вращении пульсара то попадает на поверхность нашей планеты, то уходит с нее. Вот и получается некое подобие импульсов…
Разочаровавшись в пульсарах, ученые стали искать во Вселенной другие «маяки». Сегодня на их роль претендуют цефеиды — небесные тела, которые, по словам одного из исследователей, «пульсируют, словно сердце». Причем каждое такое «сердце» раз в 50 больше нашего Солнца и в 100 раз массивней его…
Название «цефеиды» происходит от звезды Дельта Цефея — одной из наиболее типичных для данного класса небесных тел. Изменения интенсивности ее излучения носят правильный характер — они ритмично повторяются через каждые 5 суток и 8 часов.
«Уши» Вселенной. Радиоастрономия изменила даже сущность труда астронома. Она не требует безоблачного небосвода, неподвижного воздуха, упорного бдения по ночам. Нынче дело исследователя дать задание для подготовки радиотелескопа к работе и указать, в каком виде — на бумаге, магнитной ленте или в виде фотограмм — он хотел бы получить результаты. За остальным проследит автоматика.
Причем многие данные невозможно было бы получить при помощи оптической астрономии. Судите сами: в сантиметровом радиодиапазоне пространственное разрешение лучших современных радиотелескопов составляет порядка 0,0004 угловой секунды это как минимум на порядок лучше данных, получаемых в диапазоне видимого света.
И антенна современного радиотелескопа совсем не похожа на ту маленькую, переносную, с которой начинал работать Янский. Обычно это гигантская чаша диаметром несколько десятков, а то и сотен метров. А когда мне довелось побывать на одном из лучших радиотелескопов современности РАТАН-600, то первое впечатление было, что ты пришел на стадион. Такой же ровный зеленый газон, окаймленный по краям… Только не трибунами, а своеобразным «забором» из 895 плотно пригнанных друг к другу металлических щитов-экранов. Щиты эти, расположенные по кругу диаметром 600 м, и представляют собой круговое зеркало телескопа. Все вместе или по частям щиты могут передвигаться таким образом осуществляется наводка на те или иные объекты на небосводе.
Пойманное зеркалом-антенной радиоизлучение передается на вторичные зеркала, находящиеся внутри круга радиотелескопа. Эти зеркала вместе с кабинами, в которых расположена регистрирующая аппаратура, передвигаются по рельсовым путям, словно обычные трамваи. В центре радиотелескопного поля даже есть локомотивный круг, словно в настоящем депо.
Радиоастрономический телескоп Академии наук — именно так расшифровывается сокращение РАТАН — был сдан в эксплуатацию в 1977 году, и за два десятилетия с его помощью было сделано немало открытий. В частности, именно здесь, в окрестностях станицы Зеленчукской на Кавказе, где расположен уникальный инструмент, впервые услышали «радиоголоса» двух спутников Юпитера — Ио и Европы. Причем, по свидетельству члена-корреспондента РАН Ю. Н. Парийского, излучение Ио интересно тем, что не имеет аналогов в Солнечной системе. Ученые даже иногда шутят, что это подают голос юпитерианцы…
С помощью радиотелескопа был исследован также температурный градиент Луны. То есть, говоря проще, установлено распределение температур по мере погружения в недра естественного спутника нашей планеты. Проведено также комплексное исследование гигантского пылевого облака вблизи центра галактики Стрелец В2, построены кинематическая и эволюционные модели этого небесного объекта…
За прошедшие годы радиотелескоп неоднократно модернизировался. Экранирующая сетка и малые алюминиевые экраны, поставленные в щелях между элементами, усовершенствованный первичный излучатель позволили в значительной степени обособиться, как говорят специалисты, отстроиться от «наводок» промышленных шумов, а использование криогенных температур для работы радиометра позволило еще больше повысить чувствительность измерительного тракта. Введение же в строй автоматизированного комплекса, обеспечивающего точное управление системами РАТАНа, позволило использовать уникальный инструмент и в режиме радиоинтерферометрии.
Последнее, видимо, требует особого пояснения.
Телескопы «в упряжке». Как и в обычном, оптическом телескопе, чувствительность радиотелескопа во многом зависит от размеров его зеркала-антенны. Однако увеличивать беспредельно размеры антенны не удается. Стоимость такого сооружения, его вес увеличиваются в кубической зависимости от линейных размеров. Это приводит к тому, что в настоящее время нерентабельно увеличивать размеры антенны более 1 км.
Невозможно также и абсолютно уничтожить, подавить все шумы и паразитные помехи.
Таким образом, как будто наметился предел на пути совершенствования астрономических инструментов. И вот в поисках выхода специалисты решили использовать мощь нескольких инструментов для единой цели. Образно говоря, не столь давно, например, радиоастрономам нашей страны, ФРГ, США, Швеции и Австралии удалось собрать установку, антенна которой была диаметром… в земной шар!
Вся хитрость — в оригинальном научном подходе, который теперь используют специалисты. Представьте себе, что, скажем, у нас на Кавказе и где-то в Калифорнии два радиотелескопа нацеливаются на один и тот же объект на небосводе. На обоих телескопах принятые сигналы записываются на магнитную ленту вместе с отметками точного времени, для этого используются атомные часы.