Таинственный геном человека - Страница 14

Изменить размер шрифта:

О ДНК они знали очень мало, и ситуация еще больше усложнялась тем, что Крик полагал большую часть информации о связи ДНК и наследственности неверной. Именно это отношение и привело к возникновению проблем с Брэггом, ведь оно означало, что Крик не доверяет результатам работы старших товарищей по лаборатории. Но настоящей причиной злости Брэгга было открытие химиком Полингом альфа-спирали белка. Крик был уверен, что неудача Кавендишской лаборатории объяснялась результатами более ранних экспериментов с рентгеновским анализом кератина, белка кожи, который также является основным составляющим веществом человеческих ногтей и когтей у животных. Разговор, который впоследствии вспоминал Крик, демонстрирует его образ мышления: «Я пытаюсь сказать, что [так называемые] свидетельства могут быть крайне ненадежными, и поэтому их нужно использовать по минимуму. У нас есть три или четыре факта, и мы не знаем, на какой из них можно положиться…[Что если мы] отбросим вот этот… Тогда можно посмотреть на остальные и попытаться их интерпретировать».

* * *

Уотсон начал работу в Кавендишской лаборатории в 1951 году, когда Лайнус Полинг опубликовал свою работу об альфа-спирали белка. Это открытие так потрясло Уотсона, что в течение всего времени работы с Криком над структурой ДНК он постоянно озирался на Полинга.

И у него были все основания считать того своим главным конкурентом. Полинг, получивший Нобелевскую премию по химии в 1954 году, уже превозносился историками науки как один из самых влиятельных химиков на свете. Его лучшей (хотя и не единственной блестящей) идеей стало применение квантовой теории к химическим связям атомов в молекулах, в частности, в сложных органических соединениях – кирпичиках, из которых выстроена сама жизнь.

ХХ век стал временем поразительных достижений в астрономии. Ученые исследовали звезды, галактики и черные дыры, узнали о существовании сил, управляющих Вселенной. Столь же важными, хотя и не нашедшими такого широкого признания у общественности, были достижения химиков и биохимиков в изучении микромира атомов и молекул. Атомы в молекулах жизни соединяются между собой двумя типами связей. Один из них называется ковалентной, а второй – водородной связью. Полинг применил к силам, участвующим в формировании этих связей, принципы квантовой механики.

Перед нами не стоит задача постичь сложные математические основы прикладной физики – нам нужно понять лишь базовые механизмы. Проще всего разобраться с ними на примере знакомой всем нам молекулы воды.

Всем известно, что химическая формула воды – H2O. Это означает, что молекула воды состоит из одного атома кислорода и двух атомов водорода. Но как они связываются между собой, формируя стабильное вещество, с которым мы сталкиваемся ежедневно? Молекулу воды можно сравнить с планетой (атом кислорода), вокруг которой вращаются две луны (атомы водорода). Пользуясь такой моделью, легко представить, как сила гравитации удерживает водородные луны на орбитах вокруг кислородной планеты. В молекулярных масштабах сила, притягивающая два атома водорода к атому кислорода, называется ковалентной связью. Если мы рассмотрим атом на ультрамикроскопическом уровне, то увидим, что в ядре каждого атома водорода содержится один положительно заряженный протон, а вокруг ядра вращается один отрицательно заряженный электрон. Ядро атома кислорода содержит восемь положительно заряженных протонов, а по орбитам вокруг него движутся восемь электронов с отрицательным зарядом. Эти электроны расположены на двух орбитах: два – на внутренней и шесть – на внешней. При формировании молекулы воды два электрона, вращающиеся вокруг ядер атомов водорода, совмещаются с двумя из шести электронов, находящихся на внешней орбите атома кислорода. Спаренные электроны продолжают притягиваться к протонам своих ядер и, таким образом, оказываются соединенными как с ядрами атомов водорода, так и с ядром атома кислорода. Такое совмещенное притяжение формирует стабильную ковалентную связь между двумя атомами, точно так же, как и сила гравитации создает стабильные орбиты двух лун, вращающихся вокруг нашей воображаемой кислородной планеты.

Водородные связи действуют по-другому. Снова возьмем для примера молекулу воды, но теперь рассмотрим взаимодействие между самими молекулами. Между молекулами, содержащими водород и более тяжелые атомы, например азот, кислород или фтор, возникают силы притяжения, более слабые и менее стабильные, чем ковалентные связи. Молекулы воды состоят из водорода и кислорода, поэтому между ними формируются водородные связи. Плотность связей между молекулами объясняет разницу между водой в газообразной (пар), жидкой и твердой (лед) форме. Когда вода находится в твердом состоянии, ее молекулы, соединенные водородными связями, формируют нечто вроде кристалла. В жидкой воде водородные связи могут соединять разное количество молекул. В паре за счет добавления дополнительной тепловой энергии водородные связи разрываются, в то время как ковалентные связи, скрепляющие атомы внутри молекул, остаются неизменными.

Итак, водородные связи слабы и нестабильны при нагревании, а на ковалентных связях оно не отражается. Такие же два типа связей присутствуют в структуре органических соединений, например белков. Кроме того, они важны и для понимания строения ДНК.

За период с 1927 по 1932 год Полинг опубликовал около 50 научных работ, в которых описывал проведенные им дифракционные исследования, совмещенные с теоретическими расчетами в области квантовой механики. Эти исследования позволили ему вывести пять правил, известных сейчас как правила Полинга и позволяющих ученым предсказывать характер связей, соединяющих атомы в молекулах. Как минимум три из этих правил были основаны на трудах Брэгга, и подобное присвоение чужих результатов повергало того в ярость. Вражда между двумя учеными была неизбежна. Труды Полинга в области химических связей были настолько необычными, что в 1954 году он удостоился Нобелевской премии. Новый уровень понимания позволил Полингу точно визуализировать форму и параметры молекул в трехмерном пространстве. В Калтехе Полинг применил свои знания вместе с технологиями рентгеновской дифракции, разработанными Брэггом, к крупным белковым молекулам. Например, он доказал, что молекула гемоглобина (предмет исследований Перуца) меняет физическое строение после присоединения или утраты атома кислорода. На этом Полинг не остановился, и его исследования молекулярной структуры белков продолжились.

Первые рентгеновские изображения волокнистых белков были получены за несколько лет до этого в университете Лидса Уильямом Томасом Астбери, физиком, присутствовавшим на лекции Уилкинса в Неаполе. Именно на них строились предположения, которые Крик подвергал сомнению в Кавендишской лаборатории. В течение многих лет Полинг пытался применить квантовые расчеты к рентгенограммам Астбери, но результаты никак не сходились. Ему и двум его коллегам, Роберту Кори и Герману Брэнсону, потребовалось 14 лет, чтобы достичь желаемого прорыва.

Базовая структура всех белков строится на основе аминокислотного кода, «буквами» которого являются двадцать разных аминокислот. Химические связи, соединяющие аминокислоты в первичную цепь, называются пептидными связями. Полинг и его коллеги увидели, что пептиды соединяются между собой в двухмерной плоскости (такая связь называется плоскостной). Из-за устаревшего оборудования Астбери сделал серьезную ошибку при создании рентгенограмм: молекулы белков на них отклонились от естественных плоскостей, что затрудняло математическую экстраполяцию их структуры. Исправив ошибку Астбери, Полинг обнаружил, что по мере роста цепочки аминокислот формирующаяся базовая структура белка начинала напоминать витую пружину, закручивающуюся вправо, – так называемую альфа-спираль. Это открытие поразило Уотсона, вернувшегося из Неаполя.

В это время в Кембридже сэр Лоуренс Брэгг был крайне разочарован, что группа Полинга обошла его сотрудников и первой открыла структуру белка. Хотя у этой ситуации была и обратная сторона: Перуц использовал открытие Полинга, чтобы переоценить всю свою работу над молекулой гемоглобина. Эта переоценка в итоге помогла ему раскрыть структурную тайну гемоглобина и обеспечила получение Нобелевской премии по химии в 1963 году. Работа Полинга также заставила насторожиться Уотсона. Сразу по прибытии в Кембридж он понял, что у них с Криком имеется весьма знающий и могущественный соперник в гонке за следующим открытием – трехмерной структурой ДНК.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com