Стратегические игры. Доступный учебник по теории игр - Страница 22

Изменить размер шрифта:

В игре «курение» равновесие обратных рассуждений наблюдается в случае, когда нынешняя Кармен выбирает стратегию «нет», а будущая Кармен – стратегию «продолжить». Когда нынешняя Кармен совершает оптимальное действие, пристрастившаяся к курению будущая Кармен вообще не появляется на свет, а значит, и не получает реальной возможности сделать ход. Однако призрачное присутствие будущей Кармен и стратегия, которую бы она предпочла, если бы нынешняя Кармен выбрала вариант «попробовать» и предоставила бы ей шанс сделать ход, – важный элемент игры, на самом деле являющийся ключевым в определении оптимального хода нынешней Кармен.

Итак, мы описали концепции дерева игры и анализа методом обратных рассуждений с помощью очень простых примеров, в которых решение было очевидным на основании словесных аргументов. А теперь перейдем к использованию этих концепций в более сложных ситуациях, когда выполнение вербального анализа усложняется, в связи с чем роль визуального анализа с помощью дерева игры возрастает.

3. Увеличение количества игроков

Действие методов, представленных в разделе 2 в самой простой ситуации с двумя игроками и двумя ходами, можно легко расширить, при этом деревья становятся более сложными, в них увеличивается количество ветвей, узлов и уровней, но основные концепции и метод обратных рассуждений не меняются. В данном разделе мы рассмотрим игру с тремя участниками, у каждого из которых есть два варианта выбора. С небольшими вариациями эта игра будет появляться во многих следующих главах.

Три игрока, Эмили, Нина и Талия, живут на одной маленькой улице. Каждую девушку попросили внести свой вклад в создание декоративного сада на месте пересечения улицы с автомагистралью. Окончательная площадь и пышность сада зависят от того, сколько участницы игры готовы в него вложить. Кроме того, хотя все три участницы были бы счастливы иметь такой сад (а его размер еще больше усилил бы это ощущение), ни одна из них не спешит с инвестициями из-за их размера.

Предположим, что если две или три участницы игры внесут свой вклад в создание сада, то этих ресурсов хватит для его закладки и последующего ухода за растениями, а сам сад будет весьма привлекательным и милым. Тем не менее, если всего одна из девушек или никто из них этого не сделают, сад будет скудным и неухоженным и не принесет радости людям. Таким образом, с точки зрения каждой участницы, существуют четыре разных исхода.

• Одна участница игры не инвестирует в сад, в отличие от двух остальных (что приводит к созданию привлекательного сада и позволяет ей сэкономить на вкладе).

• Одна участница игры инвестирует в сад, и остальные, одна или обе, – тоже (что приводит к созданию привлекательного сада, но не позволяет ей сэкономить на вкладе).

• Одна участница игры не инвестирует в сад, и только одна из двух оставшихся участниц вносит свой вклад (что приводит к созданию скудного сада, но позволяет ей сэкономить на вкладе).

• Одна участница игры инвестирует в сад, в отличие от двух остальных (что приводит к созданию скудного сада и не позволяет ей сэкономить на вкладе).

Очевидно, что первый из исходов – лучший, тогда как последний – худший. Мы хотим, чтобы более высокие показатели выигрышей соответствовали более благоприятным исходам, поэтому присваиваем первому исходу в списке выигрыш 4, а последнему – выигрыш 1. (Иногда выигрыши соответствуют порядковому номеру исхода в списке исходов. Следовательно, при наличии четырех исходов первый был бы лучшим, а четвертый – худшим, а меньшие числа обозначали бы более предпочтительные исходы. Читая книгу по теории игр, обратите особое внимание на то, какую систему обозначений выбрал автор; если вы пишете о теории игр, вам следует точно указать используемую систему обозначений.)

В двух средних исходах присутствует некоторая неоднозначность. Предположим, каждый игрок ценит привлекательный сад более высоко, чем собственный вклад в его создание. В таком случае исход, указанный в списке вторым, обеспечит выигрыш 3, а исход под номером три – выигрыш 2.

Допустим, участницы игры ходят поочередно. Эмили получает право первого хода и решает, инвестировать ли ей в сад. В свою очередь Нина, глядя на выбор Эмили, решает, стоит ли и ей так поступить. И наконец, Талия, оценив выбор Эмили и Нины, делает аналогичный выбор[22].

На рис. 3.6 изображено дерево этой игры. Чтобы облегчить ее описание, мы обозначили узлы действия специальными символами. Эмили делает ход в начальном узле a, а ветви, соответствующие двум имеющимся у нее вариантам выбора («внести вклад» и «не вносить вклад»), ведут к узлам b и c. В каждом из них должна сделать ход Нина и выбрать один из представленных вариантов. Ее выбор приводит к узлам d, e, f и g, в каждом из которых наступает очередь Талии ходить. Имеющиеся у Талии варианты выбора приводят к восьми концевым узлам, где мы показываем выигрыш в таком порядке: (Эмили, Нина, Талия)[23]. Например, если Эмили решает инвестировать в создание сада, Нина нет, а Талия да, то красивый декоративный сад будет разбит и две участницы, внесшие вклад в его создание, получат выигрыш 3 каждая, а участница, которая решила сэкономить, – свой максимальный выигрыш 4. В данном случае список выигрышей выглядит так: (3, 4, 3).

.

Стратегические игры. Доступный учебник по теории игр - i_007.jpg

Рис. 3.6. Игра «уличный сад»

Для того чтобы применить к этой игре метод обратных рассуждений, начнем с узлов действия, расположенных непосредственно перед концевыми узлами, а именно с узлов d, e, f и g. Талия делает ход в каждом из этих узлов. В узле d она сталкивается с ситуацией, когда и Эмили, и Нина вносят вклад в создание сада, то есть сад уже наверняка будет красивым, поэтому, выбрав вариант «не вносить вклад», Талия получает свой максимальный выигрыш 4, тогда как в противном случае – следующий по размеру выигрыш 3. Стало быть, предпочтительный для Талии вариант выбора в данном узле – «не вносить вклад». Мы отображаем это путем выделения соответствующей ветви жирной линией и добавления к ней стрелки; любого из этих способов было бы достаточно для иллюстрации выбора Талии. В узле e Эмили выбрала вариант «внести вклад», а Нина – «не вносить», поэтому вклад Талии крайне важен для создания красивого сада. Талия получит выигрыш 3, если выберет «внести вклад», и 2 в результате отказа. Ее предпочтительный вариант выбора в узле e – «внести вклад». Аналогичным образом можно проверить выбор Талии в двух оставшихся узлах.

Теперь давайте вернемся немного назад и проанализируем предыдущий этап – а именно узлы b и c, в которых наступает очередь Нины выбирать. В узле b Эмили решила инвестировать в создание сада, поэтому Нина рассуждает так: «Если я выберу вариант “внести вклад”, это приведет игру в узел d, а там, насколько мне известно, Талия выберет “не вносить вклад”, и мой выигрыш составит 3. (Сад будет красивым, но я понесу убытки.) Если я выберу “не вносить вклад”, игра переместится в узел e, где, как мне известно, Талия выберет “внести вклад”, а мой выигрыш будет 4. (Сад будет красивым, а я сэкономлю на расходах.) Следовательно, я выбираю “не вносить вклад”». Аналогичные рассуждения показывают, что в узле c Нина предпочтет вариант «внести вклад».

И наконец, рассмотрим выбор Эмили в начальном узле a. Она может предвидеть последующий выбор как Нины, так и Талии и знает, что если выберет вариант «внести вклад», то Нина выберет «не вносить вклад», а Талия – «внести вклад». Если две участницы игры инвестируют в создание сада, он будет красивым, но Эмили понесет издержки, а значит, ее выигрыш составит 3. Если Эмили предпочтет «не вносить вклад», то в двух следующих друг за другом узлах будет выбран вариант «внести вклад», и при наличии красивого сада и отсутствии издержек ее выигрыш составит 4. Таким образом, оптимальный выбор Эмили в узле a – «не вносить вклад».

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com