Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Страница 2
вычислено = 1,00115965218161(24),
измерено = 1,00115965218059(13)
(в скобках указан размер неточности в двух последних знаках). Результат вычисления опирается на «всё», что есть в квантовой теории, и, вне всякого сомнения, свидетельствует, что имеющаяся теория не может быть радикально неправильной, если выражаться самым сдержанным образом.
Универсальная применимость. Основные правила квантового мира представляют собой фундаментальные законы природы. С каким охватом и насколько фундаментальные? До какой степени мы в них уверены?
Ни одна физическая концепция не является «сакральным» знанием, и мы в целом готовы к тому, что при каких-то условиях концепции могут отказывать. Основополагающие принципы физики нельзя доказать в математическом смысле – они выражают собой обобщение наблюдений и не предполагают «доказательства»; опровергнуть же их, наоборот, можно даже единственным ясно выраженным контрпримером. В общем, мы пользуемся физическими теориями до тех пор, пока они соответствуют наблюдениям, а когда это перестает происходить, задумываемся о новых.
На фоне всех известных нам научных концепций квантовая механика дополнительно выделяется необычностью своего устройства. И тем не менее ни из одного угла Вселенной не поступает указаний, что базовые квантовые принципы требуют пересмотра. Вот характерное высказывание по этому поводу (заодно затрагивающее и следующую важную тему, правда, с использованием устрашающей терминологии):
Вполне возможно, что в один прекрасный день мы обнаружим расхождения квантовой теории с экспериментами. Однако данные на сегодняшний день подтверждают тот взгляд, что наша Вселенная является квантовой до самой сердцевины, и поэтому нам необходимо согласовать принцип суперпозиции, унитарность и их последствия – иллюстрируемые, например, нарушением неравенства Белла – с нашим восприятием и пониманием.
Устройство реальности: интерпретации. «Восприятие и понимание» в приведенной цитате – это о том, как, собственно, устроена квантовая реальность и наши взаимоотношения с ней, при том что мир вокруг нас совсем не выглядит квантовым. Выяснить это непросто: квантовая реальность прячется за сложением эффектов, происходящих от огромного числа объектов, а непосредственно «подглядеть» за ними поодиночке очень непросто уже по той причине, что квантовые объекты вообще никак не выглядят. Достигнутые успехи в понимании квантовой природы потребовали мышления с опорой не на наглядность, а на логику, вовлекающую математические абстракции. Но при этом в известной мере стирается грань между самими объектами и языком, на котором мы их обсуждаем. Не так просто разграничить три типа «вещей»: квантовую теорию как формально-математическую схему (необычайно успешную, как уже было сказано), квантовый мир «сам по себе» (ускользающий от прямого рассмотрения) и результаты измерений, которые мы получаем, изучая квантовые системы.
Недоговоренности по поводу того, «что есть что» в мире и в наших представлениях о нем, ничуть не мешают успехам квантовой механики, но только усиливают желание предложить интерпретации – основанные на некоторых дополнительных предположениях пояснения о том, «что все-таки происходит», что именно описывает квантовая теория и как оно связано с наблюдаемой структурой мира. В подавляющем большинстве традиционных руководств по квантовой механике вопросы различных интерпретаций практически не обсуждаются как слишком философские, да и не нужные для вычислений, но здесь им будет уделено должное внимание. Интерес к ним, надо сказать, составляет тенденцию последнего времени, отмеченную среди прочего недавней Нобелевской премией по физике и подпитываемую перспективой квантовых вычислений и расширяющимися экспериментальными возможностями.
Что же в книге? Разбиение на главы отражает содержательную часть, а не исторические вехи, как уже было сказано. Вот подсказки для нетерпеливых. Самые «веселые» (в значении, близком к «беззаботные») главы – 11 и 12; самые «практичные» (при общем отсутствии акцента на практических аспектах) – 17 и 18; самые сложные – 24 и 25; самая загадочная – 21; основные в отношении базисного содержания квантовой механики – 8, 9 и 10; самые «исторические» (при общем отсутствии акцента на исторических аспектах) – 6, 14 и 23. Про не упомянутые здесь главы нельзя сказать, что у них нет никаких качеств, просто не видно какого-то одного заведомо доминирующего. Для тех, кто не собирается читать по порядку, но сначала все же наткнулся на этот абзац, вот кратчайшее описание содержания.
Вслед за вводной главой 1 главные качественные особенности квантового мира обсуждаются в главах 2–5. Основные мотивы здесь – возникновение дискретности (глава 2), несовместимость различных свойств друг с другом (которую я называю враждой, чтобы избежать технически очень нагруженного высказывания; главы 3 и 4) и индетерминизм (глава 5). Промежуточный итог в некотором роде подводится в главе 6, отчасти с критических позиций, которые в свое время отстаивал Эйнштейн. Он руководствовался определенными представлениями об устройстве реальности, и в книге эти вопросы также появляются в этой главе. До некоторой степени техническое, но совершенно необходимое для всего дальнейшего «отступление» в главе 7 посвящено спину.
В главах 8 и 9 появляется основное средство для описания состояний квантовых систем – фундаментальное эволюционное уравнение, к которому «сама тянется рука» каждого профессионала перед лицом едва ли не любой квантовой задачи. Вооружившись этим знанием, в главе 10 мы на новом уровне возвращаемся к индетерминизму, а конкретно к вероятностям.
С этого момента становятся видны основные «недоговоренности» квантовой механики. Они представляют собой определенный вызов, и значительная часть книги (главы 11, 12, 13, 19, 20) посвящена вариантам ответа на него – интерпретациям квантовой механики. Они кажутся мне интересными не только каждая сама по себе, но еще и тем, насколько они непохожи. Мы пока не в состоянии эмпирически обосновать выбор между ними, но прогресс в технологиях уже позволил получить от природы ответ на конкретный вопрос о том, как в квантовой реальности (не) могут присутствовать скрытые параметры – «еще более глубокий» слой реальности. Эта история, начало которой восходит к сомнениям Эйнштейна, а кульминация на данный момент отмечена Нобелевской премией 2022 года, излагается в главах 14, 15, 16. Здесь не обошлось без некоторой исторической канвы, а на первом плане оказалась квантовая запутанность.
Возможности квантовой механики в действии иллюстрируются на примере квантовой телепортации (глава 17) и квантовых вычислений (глава 18). Комбинация нескольких концепций в главе 21 позволяет заострить и уточнить вопросы об устройстве квантовой реальности. Столь важная для нас метаморфоза – «превращение» квантового мира внутри вещей в окружающий нас классический мир – обсуждается в главе 22.
Завершающие главы 23, 24, 25 – это переход от квантовой механики к релятивистской квантовой теории поля, начинающийся с бессмертной саги с Дираком в главной роли. Впрочем, кульминационную в этом сюжете главу 24 придется, возможно, пропустить из-за заметного превышения допустимого уровня абстракции (я надеюсь, что читатель великодушно простит мне «выпадение» около 4 % общего объема книги). Для «валидации» всей конструкции квантовых полей в глазах тех читателей, у кого она вызвала легкую оторопь, в главе 25 появляется Стандартная модель. Путеводитель по этой фундаментальной теории там искать не следует, но мне кажется важным в завершение книги добраться до самой квантовой «сердцевины».
В конце для справки приведены кратчайшие биографические сведения о почти всех упоминаемых в книге людях.