Современная логика - Страница 6

Изменить размер шрифта:

Использование формализованного языка для описания способов правильного рассуждения невозможно переоценить. Без него нет современной логики. В определенный период своего развития каждая наука созревает для коренной перестройки своего языка. В свою очередь, создание нового языка, обладающего неизмеримо большими, чем прежний, выразительными возможностями, оказывается мощным стимулом для дальнейшего развития этой науки. Отмечая эту взаимосвязь между успехами науки и преобразованием ее языка, французский химик XVIII века А. Лавуазье писал: «Так как слова сохраняют и передают представления, то из этого следует, что нельзя ни усовершенствовать язык без усовершенствования науки, ни науку – без усовершенствования языка, и что как бы ни были достоверны факты, как бы ни были правильны представления, вызванные последними, они будут выражать лишь ошибочные представления, если у нас не будет точных выражений для их передачи».

Революция в логике привела к созданию логически совершенного языка. Последний сделал возможным дальнейшее изучение и описание закономерностей правильного мышления. «Чему, спрашиваю я, одолжены своими блистательными успехами в последнее время математические и физические науки, слава нынешних веков, торжество ума человеческого? Без сомнения, искусственному языку своему, ибо как назвать сии знаки различных исчислений, как не особенным, весьма сжатым языком, который, не утомляя напрасно нашего внимания, одной чертой выражает обширные понятия». Эти слова, сказанные знаменитым русским математиком XIX века Н. Лобачевским, с полным правом можно отнести не только к искусственным языкам математики и физики, но и к формализованному языку современной логики.

7. Современная логика и другие науки

В заключение этого, по необходимости краткого, разговора о том, чем занимается современная логика, следует сделать несколько замечаний о ее связях с другими науками. С момента своего возникновения логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно этике, эстетике, психологии и др., одной из «философских наук». И только во второй половине XIX века формальная – к этому времени уже математическая – логика отпочковалась, как принято выражаться, от философии. Примерно в это же время от философии отделилась и стала самостоятельной научной дисциплиной и психология. Но если в психологии этот процесс был связан, прежде всего, с проникновением в нее опыта и эксперимента и сближением ее с другими эмпирическими науками, то в отделении формальной логики решающую роль сыграло проникновение в нее математических методов и сближение с математикой.

Самостоятельность, обретенная логикой, не означала, конечно, того, что она утратила всякую связь с философией. Просто в новую историческую эпоху прежняя связь приобрела другой характер. Взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения формальной логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики, несомненно, способствует более ясному пониманию самих философских понятий, принципов и проблем.

Тесная связь современной логики с математикой придает особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайние, ведущие, в общем-то, к тому же самому конечному результату – объединению математики и логики в единую научную дисциплину, сведению их в одну науку. Согласно Г. Фреге, Б. Расселу и их последователям математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу.

Этот подход к обоснованию математики получил название логицизма. Наиболее законченное изложение он нашел в изданном в 1910–1913 годах трехтомном труде «Principia Mathematica» написанном Б. Расселом совместно с А. Уайтхедом. Сторонники логицизма добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.

Однако в целом логицизм оказался утопической концепцией. «Математика не выводима из формальной логики, – подводит итог математик и логик Д. Бочвар, – ибо для построения математики необходимы аксиомы, устанавливающие факты из области объектов, и, прежде всего, – существование в последней определенных объектов. Но такие аксиомы обладают уже внелогической природой».

Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной – если не единственной – задачей математической логики уточнение понятия математического доказательства и исключение парадоксальных, противоречащих интуиции утверждений из математических теорий. «Математическая логика, – пишет, например, английский логик Р. Гудстейн, – имеет своей целью выявление и систематизацию логических процессов, употребляемых в математическом рассуждении, а также разъяснение математических понятий. Сама она является ветвью математики, использующей математическую символику и технику, ветвью, развивающейся в целом в течение последних ста лет, и притом такой, которая по своей плодотворности, по силе и важности своих открытий вполне может претендовать на место в авангарде современной математики». Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания, а не только в одной лишь математике. Математическая логика, истолкованная исключительно как один из разделов математики, не только лишается способности прояснять и уточнять основания математики, но и сама становится непостижимой.

С первых дней своего возникновения современная логика способствовала решению логических проблем и преодолению трудностей, встававших перед математикой. Каждый новый шаг в прогрессе логики быстро сказывался на развитии математической науки. С другой стороны, без использования математических методов и понятий не было бы и современной логики. Но это не означает, разумеется, что одна из этих наук должна быть поглощена другой. Тенденция ставить логику на службу, прежде всего, математике является, однако, по-своему показательной. Она выразительно подчеркивает тесную взаимосвязь логики и математики, их плодотворное и взаимобогащающее воздействие друг на друга.

Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики Н. Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника были бы невозможны без использования алгебры логики – этого исторически первого раздела современной логики. В управляющих схемах, применяемых в ЭВМ, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов, богатые возможности использовать для их осуществления автоматические машины. «Математическая логика, – заключает математик Г. Поваров, – является необходимым инструментом для машинизации умственного труда».

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com