Системная технология - Страница 30
Для наглядности ориентированный граф отношений показан на рис. 3.1а, 3.1б, в виде двух подграфов. Вершины графа – множества, ребра – отношения между ними. Ребра без весов отражают отношения включения множеств.
* Каждый путь на этом графе, проходящий множества А, В, D , E, F, P, С в какой-либо последовательности, отражает определенный порядок действий при осуществлении какой-либо деятельности (исследование или проектирование системы, технологический процесс изготовления изделия) и может описываться каким-либо дополнительным или главным предикатом. В свою очередь, каждое минимальное покрытие всех вершин графа определений описывает режим системы,
отвечающий решению отдельных задач. Так, путь F – B – A – D – E на графе определений и отношений отражают простейшую последовательность формирования системы, создаваемую для реализации процесса достижения цели, описанную в начале раздела, путь А – F – D – F – B – F отражает последовательность прохождения предмета труда в технологическом процессе и т.д.
a)
б)
в)
Рис. 3.1. Графы отношениий.
Модели процесса и структуры.
* В общем случае каждому элементу ai из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ⊂ D, через которые ai воздействует на другие элементы множества А. Каждому элементу aj из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ⊂ D, через которые aj подвергается воздействию других элементов из А. Пересечение Di ⋂ Dj = Dij множество элементарных процессов взаимодействия, через которые ai воздействует на aj (для упрощения в дальнейшем примем, что Dij — одноэлементные множества: Dij = {dij}). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов Ei, Ej, Eij, обеспечивающие, соответственно, множества процессов взаимодействия Di, Dj, Dij.
* Будем считать, что главным предикатам Φ1-Φr соответствуют отношения ψA, ψB, ψD, ψE строгого частичного порядка и отношения α, α-1, β, β-1, σ, σ-1, φ, φ-1, ψAF, ψ-1AF, ψ-1BF, ψDF, ψ-1DF, ψEF, ψ-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.
* Сформулируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов Φ; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения α, β, σ, φ, ψв, , и, соответственно , α-1, β-1, σ-1, φ-1, ψ-1в. Для описания взаимосвязи с F выберем отношение ψ вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты Φ1 ÷ Φr описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.
* Модели процесса и структуры системы определим в следующем виде.
Процесс Р системы S (назовем его также полным системным процессом) – это множество взаимосвязанных элементарных процессов:
P = < {B, D}, W, Φp >; Φр ⊂ Φ. (3.3.2)
Структура С системы S (назовем ее также полной системной структурой) – это множество взаимосвязанных элементов системы:
С = < {A, E}, W, Φc >; Φс ⊂ Φ. (3.3.3)
* В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D; следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (3.3.2) и (3.3.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej ) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры Φ целенаправленного процесса формирования модели (3.3.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур Φр и Φс , Φр ⇔ Φс. Далее, любая операция из Wc, например, объединение элементов а, а ∈ А и е, е ∈ E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ∈ B и d, d ∈ D. Следовательно, Wp = Wc. Но так как Wp ⊂ Wc , Wc ⊂ W и W {Wp ⋃ Wc} = ∅, то Wp = Wc = W. Итак, доказана следующая
Теорема 3.1. Для модели системы S модели процесса Р и структуры С изоморфны.
* Модели полных, основных и дополнительных системных объектов.
На основе (3.3.1)–(3.3.3) сформулируем следующий результат.
Теорема 3.2. Модель полной системы S – это совокупность моделей процесса Р и структуры С:
S = < P,C,Φ(α),Φ(α-1),Φ(β),Φ(β-1)> (3.3.4)
* Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Рa и системного процесса взаимодействия Ре. Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс Pа, минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению Pa. Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели Pa при «передаче» предмета труда от одного элементарного процесса достижения цели вi к некоторому другому элементарному процессу достижения цели вj. Обозначим это допустимое изменение δd — изменение результатов некоторого элементарного процесса вi при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу вj. Множество этих изменений обозначим Δd, т.е. δd ∈ Δd. Отсюда вытекает следующая теорема.