Системная технология - Страница 22

Изменить размер шрифта:

* Модель структуры системы однозначно задается описанием способов осуществления взаимодействия между элементами системы (реализации транспортно-складских операций, напр.). Системная технология использует следующие известные описания уровней этого взаимодействия:

первый – нефункциональное взаимодействие, обусловленное природными явлениями или противоречивыми характеристиками;

второй – симбиоз, выражается во взаимодействии, напр., между разными организмами, например, растением и паразитами;

третий – синергестическая взаимосвязь, в рамках которой характеристики элементов взаимно усиливают друг друга и систему в целом.

В технологических системах наблюдается синергестическое взаимодействие, так как в них наблюдается взаимное дополнение и усиление элементов. Как технологическая система без одного из ее элементов (если не предусмотрено специальное резервирование), так и любой из ее элементов вне технологической системы не могут выполнять своего назначения.

* С позиций системной технологии обязательным компонентом модели системы должно являться описание ее границ с внешней средой и границ с внутренней средой ее элементов. Могут существовать как физические, так и концептуальные границы систем.

Определение модели границ системы с ее внешней средой проведем следующим образом: если составить модели всех элементов системы и причинно-следственных отношений между ними, то все элементы, которые связаны причинно-следственными отношениями между собой, а также причинно-следственные отношения только между элементами системы входят в модель системы; те причинно-следственные отношения, которые связывают элементы системы с внешней средой системы, описывают границы системы. Если описать все причинно-следственные отношения, направленные к системе от внешней среды, то мы получим модель границы системы с внешней средой на ее входе; если описать все причинно-следственные отношения, направленные от системы к внешней среде, то мы получим модель границы системы с внешней средой на ее выходе.

Определение модели границ системы с внутренней средой ее элементов проведем следующим образом. Если описать элемент системы, как систему (назовем ее микросистемой), то все микроэлементы (т.е. элементы микросистемы) и причинно-следственные отношения только между ними войдут в модель элемента, как микросистемы; два причинно-следственных отношения между элементом и системой (одно на его входе и другое на его выходе) составят модели его границ с системой на входе и выходе элемента; здесь надо иметь в виду, что эти причинно-следственные отношения между элементом и системой являются причинно-следственными отношениями этого элемента с двумя другими элементами этой системы.

Другими словами, вся совокупность причинно-следственных отношений между элементами системы составит собой одновременно и основную, «формальную» часть модели границы системы с внутренней средой ее элементов. Под влиянием внутренней среды элемента или внешней среды системы могут появляться и «неформальные», т.е. заранее нерегламентированные отношения, которые составят «неформальную» часть модели границы системы с внутренней средой ее элементов.

По этой причине необходимо при моделировании взаимодействий между элементами системы учитывать не только желаемые целесообразные, в смысле цели создания системы, взаимодействия между ними, но и те воздействия, которые могут «пойти» по каналам взаимодействия из внутренней среды ее элементов. В производственных системах такие воздействия могут происходить в результате взаимодействия внутренней среды микросистемы с внешней средой системы; это могут быть воздействия климата, социальной среды, городского транспорта, страховых компаний, профсоюза, семьи, магнитного поля Земли.

* С помощью моделей систем описываются количественные и качественные характеристики (параметры) систем. Число характеристик, которые имеют значение для проектирования, построения, исследования и оценки функционирования системы может быть довольно значительно. Это, например, безопасность деятельности; точность функционирования; быстродействие; издержки; надежность, социальные аспекты. Набор характеристик может значительно меняться на разных фазах жизненного цикла системы.

* Системная технология использует принцип иерархической организации или принцип интегративных уровней [12,17,18], в следующем виде: разные элементы системы и разные совокупности элементов системы (ее подсистемы), а также разные взаимодействия в системе имеют разные приоритеты в смысле влияния на построение и осуществление процесса и структуры системы в целом и ее частей. Так, президент фирмы имеет больший приоритет в принятии решений по оперативному управлению фирмой в целом, чем менеджеры по управлению кадрами и менеджеры по управлению финансами, которые, в свою очередь, имеют больший приоритет по принятию решений в своих сферах деятельности по сравнению с другими менеджерами; подразделения и предприятия фирмы имеют меньшие приоритеты в определении стратегии развития фирмы в целом, нежели совет директоров или правление фирмы и т.д.; взаимодействие президента фирмы с членами правления приводит, как правило, к более приоритетным решениям, нежели его взаимодействие со своим референтом.

В моделях крупномасштабных проектов и программ, которые системная технология также рассматривает, как системы, результаты решения некоторых «ключевых» проблем могут оказать существенное влияние на возможность разрешения ряда других проблем, которые без этих результатов могут быть неразрешимы.

Иерархическая организация модели системы отражается в ее многоуровневом графическом изображении: на более «высоком» уровне располагаются более «значимые», в смысле влияния на поведение или структуру системы, элементы. Кроме этого, в иерархических моделях, как правило, присутствуют подсистемы. Под подсистемой понимается совокупность элементов, осуществляющих определенную часть процесса системы, в осуществлении которой все другие элементы системы не могут участвовать в соответствии с замыслом построения модели.

* Системная технология использует принцип «черного ящика», который утверждает, что для предсказания поведения системы (или ее подсистемы) не обязательно точно знать, как ее процесс и структура построены из элементарных процессов и структур [12]. Так, для моделирования физиологии клеток не обязательно исчерпывающим образом понимать ее биохимию, для описания динамики популяций животных не нужно фундаментальных знаний по физиологии, для моделирования поведения социальных систем не обязательны глубокие знания по психиатрии, для моделирования технических систем автоматического регулирования уровня жидкости не обязательны знания в области сопротивления материалов и т.д. Этот принцип широко применяется при моделировании больших систем на основе анализа характеристик входных и выходных потоков ресурсов, преобразуемых системой.

* Системная технология уделяет большое внимание «неформальным» графическим и вербальным моделям. Вербальными моделями являются изложенные в главах 1, 2 принцип системности, Законы системности и технологизации, концепция и принципы системной технологии, описания особенностей построения технологических процессов, структур, систем. Графические модели позволяют наглядно изобразить в виде схем, графиков, других простых и сложных графических конструкций частные и общие качественные и количественные характеристики моделей систем. Неформальные модели являются, как правило, этапом, предшествующим построению формальных математических моделей системы.

С помощью неформальных моделей системной технологии мы находим некоторую совокупность упрощений, абстракций и соотношений, к которым можно сводить все многообразие моделей технологий, прежде чем перейти к построению технологий для различных сфер деятельности человека.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com