Шаг за шагом. Усилители и радиоузлы - Страница 57

Изменить размер шрифта:

Среди других схемных находок можно назвать экспандер — предложенное сравнительно давно устройство для расширения динамического диапазона громкости. По мере увеличения уровня сигнала экспандер повышает усиление и таким образом поднимает уровень самых громких звуков над уровнем самых тихих. Напомним, что реальный динамический диапазон оркестра составляет 70 дб, в то время как при радиопередаче или на фонограмме он сжат до 35–40 дб.

Оригинальная схема экспандера, примененная в одном из зарубежных радиовещательных приемников, показана на рис. 71, 3 [14]. Сам экспандер (Л3Л4) включается между двумя соседними каскадами обычного усилителя напряжения (Л1 и Л2). Первый каскад экспандера (Л3) — это дополнительный усилитель (триодная часть) и выпрямитель (диодная часть) низкочастотного сигнала. Полученное на выходе фильтра выпрямителя напряжение медленно меняется в соответствии с изменением уровня громкости. Это напряжение подается на сетку второй лампы (Л4), которая вместе с сопротивлением R10 образует делитель напряжения. С этого делителя выходной сигнал первого каскада усилителя (Л1) подается на сетку второго каскада (Л2). При повышении громкости передачи увеличивается сопротивление нижнего участка делителя, то есть внутреннее сопротивление лампы Л4. Именно благодаря этому и происходит дополнительное повышение уровня громкости, расширяется динамический диапазон.

Управление экспандером осуществляется с помощью трех клавишей. При нажатии на первую, I, экспандер незначительно расширяет динамический диапазон. При нажатии на вторую, II, расширение диапазона достигает 14 дб, то есть на 14 дб повышается мощность звуков, соответствующих фортефортиссимо. Третья клавиша, III, выключает экспандер и направляет сигнал с Л1 на Л2 прямым путем. Примененные в экспандере импортные лампы можно заменить отечественными: ЕВС-41 —лампой 6Г2 и ЕМ80 — лампой 6И1П. В процессе налаживания может оказаться необходимым несколько изменить элементы схемы, определяющие режим ламп.

А вот еще одна интересная находка — простое приспособление искусственной реверберации (рис. 71, 4).

Звуковые волны в закрытом помещении исчезают не сразу— многократно отражаясь от стен, они затухают постепенно и благодаря этому создают послезвучание, чем-то напоминающее эхо. Этот процесс и называют реверберацией.

Для количественной оценки введено так называемое стандартное время реверберации — время, в течение которого плотность звуковой энергии уменьшается в тысячу раз. Время реверберации зависит от размеров помещения, а также от того, насколько сильно поглощаются в нем звуковые волны.

Так, в пустом концертном зале стандартное время реверберации составляет 1–2 сек, а когда зал заполнен публикой, это время может стать в полтора-два раза меньше. В небольшом жилом помещении время реверберации неуловимо мало, а в огромном и высоком зале Казанского вокзала в Москве время реверберации достигает 6–8 сек, и звук приобретает неприятную гулкость. В концертных залах и особенно в радиостудиях внутреннее архитектурное оформление, выбор отделочных материалов, драпировка стен — все это подчинено требованиям акустики и в том числе созданию необходимого времени реверберации.

Магнитная запись позволяет искусственно увеличивать время реверберации, создавать впечатление большого зала. Делается это так: вслед за основной воспроизводящей головкой пленка проходит еще несколько головок, которые воспроизводят звук с некоторым опозданием. Сигнал в этих вспомогательных головках постепенно ослабляют, и они становятся эквивалентом запаздывающих и постепенно затухающих звуковых волн. Искусственная реверберация, зачастую утрированная, создающая впечатление очень большого гулкого помещения, в последнее время довольно часто используется в радиопередачах, особенно в детских сказках или фантастических рассказах.

Несколько лет назад было предложено несложное приспособление для создания эффекта реверберации при воспроизведении грамзаписей и радиоприеме. Основа этого приспособления — стальная пружина. В одной из радиолюбительских конструкций [17] она изготовлена из рояльной струны диаметром 0,25 мм и длиной около 20 м. Проволоку навивают на болванку и получают пружину длиной около 50–60 см, которая легко умещается в ящике приемника или радиолы. Эта пружина представляет собой акустическую линию задержки — с ее помощью и создается необходимое для искусственной реверберации запаздывание звука.

Одним своим концом пружина прикреплена к якорю микрофона ДЭМ-4м, который в данном случае используется в качестве излучателя звуковых колебаний. К катушке ДЭМ-4м подводится низкочастотное напряжение, якорь начинает колебаться и передает колебания стальной пружине — по ней движется звуковая волна. Через несколько миллисекунд она приходит к другому краю пружины, к которому прикреплен пьезокристалл из обычного звукоснимателя. Кристалл колеблется и создает запаздывающий электрический сигнал. В дальнейшем он направляется в усилительный тракт, где встречается с основным сигналом.

В действительности описанная система искусственной реверберации устроена и работает несколько сложнее. В частности, для того чтобы раскачать пружину, приходится дополнительно усиливать сигнал (рис. 71, 4, б), перед тем как подавать его на ДЭМ-4м. В создании эффекта реверберации принимают участие не только первая запаздывающая волна, но и отраженные волны, несколько раз пробежавшие по пружине туда и обратно. Изменяя с помощью переменных сопротивлений R1 и R2 уровень сигнала на входе и выходе пружины, можно усилить, либо ослабить эффект реверберации.

До сих пор мы рассказывали об интересных находках техники звуковоспроизведения, которые пока, однако, не нашли особо широкого применения в массовых приемниках, магнитофонах, радиолах. Ниже речь пойдет о таких усовершенствованиях, которые в последнее время встречаются уже довольно часто, особенно в аппаратуре высокого класса.

Оркестр по частям

Мы уже много раз говорили о трудностях усиления и воcпроизведения широкой полосы частот: от 20–30 гц до 15–18 кгц (рис. 72).

Сейчас ни у кого не вызывает сомнений, что для равномерного воспроизведения столь широкой полосы ее лучше всего разделить на две-три части: например, на полосу высших (выше 4–5 кгц) и низших (ниже 4–5 кгц) частот. Существует несколько путей раздельного воспроизведения высших и низших частот, и мы познакомимся с ними, начав с наиболее простых и, наверное, поэтому наиболее распространенных.

Шаг за шагом. Усилители и радиоузлы - _126.jpg

Рис. 72. Один громкоговоритель неравномерно воспроизводит широкую полосу частот, а из-за направленности излучения заваливает высшие частоты в стороне от главной оси. Одиночный громкоговоритель создает впечатление, что звук исходит из одной точки.

Первый шаг, который необходим для воспроизведения широкой полосы частот, — это применение нескольких громкоговорителей с разной специализацией, в частности высокочастотных и низкочастотных (рис. 73). Проще всего подключить их к общей вторичной обмотке выходного трансформатора, учитывая при этом сопротивление звуковой катушки каждого громкоговорителя и его номинальную мощность. Если эти данные не учтены, то может оказаться, что какой-нибудь из громкоговорителей работает с сильной недогрузкой, в то время как другие сильно перегружены. Так, если к усилителю мощностью 5 вт подключить соединенные параллельно два громкоговорителя: 5ГД-14 и 1ГД-9, то первому из них достанется мощность около 3 вт, а второму — около 2 вт. При последовательном соединении это несоответствие еще больше усугубится и громкоговоритель 1ГД-9 будет работать (если, конечно, он будет работать!) с трехкратной перегрузкой.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com