Посвящение в радиоэлектронику - Страница 39

Изменить размер шрифта:

На операционном усилителе можно выполнить (или, как говорят, «собрать») много других устройств: генераторы напряжений прямоугольной или треугольной формы, интегратор, дифференциатор, сумматор сигналов и т. д.

Посмотрите, например, на схему сумматора.

Посвящение в радиоэлектронику - _127.jpg_0

Сумматор.

Все входы через одинаковые резисторы R присоединены к инвертирующему входу операционного усилителя. Сюда же подан сигнал обратной связи через резистор с сопротивлением KR. Значит, это устройство не только суммирует сигналы, но и усиливает их по напряжению в К раз. Неинвертирующий вход операционного усилителя соединен с общим проводом или, как говорят, он «заземлен».

Но вернемся ко входам усилителя. Если на заземленном неинвертирующем входе нет сигнала, то его практически не будет и на инвертирующем. Куда он исчезнет? Скомпенсируется сигналом обратной связи. Например, напряжение сигнала в 1 мВ на любом из входов 1–3 вызовет появление напряжения К мВ на выходе. А на инвертирующем входе усилителя произойдет почти полная взаимная компенсация этих напряжений. Мы говорим «почти», имея в виду тот факт, что собственный коэффициент усиления операционного усилителя все-таки не бесконечен. Инвертирующий вход усилителя в этой схеме часто называют виртуальной или искусственной «землей», подчеркивая отсутствие на нем напряжения сигнала. Но если так, то источники сигнала оказываются независимыми и не мешают друг другу — сигнал одного источника никогда не попадет в другой. Получается полная «развязка» источников.

Еще одно применение операционного усилителя в качестве компаратора, т. е. устройства для сравнения между собой двух различных величин, например напряжений. Пусть одно из этих напряжений подается на один вход усилителя, второе — на другой.

Посвящение в радиоэлектронику - _128.jpg_0

Компаратор.

В этом устройстве нет отрицательной обратной связи и высокий собственный коэффициент усиления используется полностью. Если напряжение U1 хотя бы немного (на несколько микровольт) больше напряжения U2, то потенциал на выходе устройства принимает максимально возможное значение, несколько меньшее напряжения питания. В этом случае говорят, что усилитель «вошел в насыщение». Если же напряжение U1, меньше U2, то потенциал на выходе принимает такое же, но отрицательное значение. Следовательно, компаратор имеет «релейную» характеристику и выдаст на выходе только два дискретных значения. Их можно назвать единица (1) и нуль (0) как это принято в цифровой технике. Да и сам компаратор чаще всего используют в устройствах для преобразования аналоговых сигналов в цифровые, сокращенно АЦП, что означает аналого-цифровой преобразователь. Ну а раз уж мы заговорили о цифровой технике, то следует рассказать о ней подробнее. Многие другие аналоговые устройства: преобразователи частоты, модуляторы, детекторы, генераторы и т. д. мы разберем на конкретных примерах в следующих главах. Итак…

Цифровые интегральные микросхемы

Все мы, часто не осознавая, стремимся в жизни к твердости, определенности и уверенности. Ваш «Да», так да, «Нет» — так нет. И в цифровой электронной технике разработчик и пользователь должны быть уверены: если устройство выдаст на выходе «единицу», так это — единица, а не что-нибудь другое. Обычно 1 соответствует высокий уровень выходного напряжения, а 0 — низкий. Логические уровни 1 и 0 практически не должны зависеть от того, подключаем мы на выход устройства какую-нибудь нагрузку или нет. Отсюда следует, что одним из основных «кирпичиков» цифровой электроники должен быть усилитель, твердо устанавливающий на выходе значения логических уровней. Очень часто в цифровом сигнале бывает необходимо поменять значения уровней между собой, т. е. иметь на выходе 0, если на входе 1, и наоборот. Всеми этими свойствами обладает инвертор, на схеме условно обозначаемый прямоугольником, а кружок у выходного проводника означает инвертирование сигнала.

Посвящение в радиоэлектронику - _129.jpg_0

Инвертор.

Слово «усилитель» мы не зря поставили в кавычки, ведь усиления напряжения сигнала в цифровых микросхемах не происходит. Более того, все микросхемы одной серии проектируют с одним и тем же напряжением питания и одинаковыми логическими уровнями. Но выходной ток логического элемента, например инвертора, может быть значительно больше входного. В справочниках указывается коэффициент разветвления по выходу, показывающий, сколько входов других элементов можно подсоединить к выходу данного элемента без нарушения работоспособности. Обычно он бывает около десяти.

Два инвертора, соединенные последовательно, точно повторяют цифровой входной сигнал. Они могут служить, например, регенератором телеграфного сигнала, искаженного помехами. Обратите внимание, насколько регенератор на логических элементах проще и надежнее электромеханического реле! Ну а что касается быстродействия, то тут и сравнивать нельзя. Если хорошее малоинерционное реле может переключаться 100, ну от силы 300 раз в секунду, то полупроводниковый инвертор способен переключаться десятки, а если он построен на особо быстродействующих микросхемах, то и сотни миллионов раз в секунду! Он способен обрабатывать сигналы с полосой до сотен мегагерц, т. е. передаваемые со скоростью сотни мегабит в секунду!

Посвящение в радиоэлектронику - _130.jpg_0

Регенератор цифрового сигнала.

Значительно большими логическими возможностями обладает двухвходовый инвертор, или элемент 2И-НЕ. Прежде чем описывать его работу, давайте рассмотрим устройство этого элемента, выбрав один из самых распространенных — К155ЛАЗ. Снаружи — это стандартный пластмассовый корпусе с 14 выводами и с габаритными размерами 10 х 20 х 4 мм. Один вывод соединяется с общим проводом («массой», «землей»), на другой — подается напряжение питания + 5 В. Остальные выводы — входы и выходы элементов. Всего в корпусе их четыре. Схема одного из элементов показана на рисунке.

Посвящение в радиоэлектронику - _131.jpg_0

Элемент 2И-НЕ.

Сразу бросается в глаза необычный вид первого транзистора — у него два эмиттера, соединенные с двумя входами. Ничего удивительного, просто это — транзистор с двумя независимыми эмиттерами. Их может быть и больше. Например в элементе К155ЛА2 восемь входов и соответственно восемь эмиттеров у первого транзистора. Если хотя бы на один эмиттер подан низкий потенциал (логический 0) или просто вход соединен с общим проводом, через эмиттерный переход пойдет ток, и первый транзистор V1 откроется, закрыв второй транзистор V2. При этом на базу транзистора V3 будет подан ток, проходящий через резистор коллекторной нагрузки транзистора V2. Транзистор VЗ откроется. В это время V4 будет закрыт, поскольку ток базы у него отсутствует. На выходе элемента окажется высокий уровень напряжения (логическая 1). Если же на всех входах будет высокий уровень напряжения, транзистор V2 откроется, открывая и V4, a V3 будет закрыт из-за большого падения напряжения на коллекторной нагрузке транзистора V2. На выходе элемента будет низкий уровень напряжения (логический 0).

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com