Покоренный электрон - Страница 64
Объятые такой «электрической лихорадкой», частицы воды быстро превращаются в пар и улетучиваются. Высокочастотные установки прекрасно сушат фарфор, фаянс, древесину.
Сырую древесину пускать в дело нельзя. Изделия из непросушенного материала неминуемо рассохнутся, растрескаются и покоробятся. Для изготовления мебели, фанеры, оконных рам, деревянных частей самолетов или музыкальных инструментов древесину приходится подолгу сушить. Чтобы высушить дубовый брусок квадратного сечения размером 10х10 сантиметров, его приходится выдерживать в сушилке 100 дней.
Обычная сушка березы в печах занимает примерно 350 часов. Расход топлива при этом весьма велик: чтобы высушить одно полено, другое полено надо сжечь. Качество сушки невысоко: от нагревания дерево коробится и растрескивается. Из двух досок — одна идет в брак. При обычной сушке под влиянием теплоты влага прежде всего испаряется из наружных слоев. Внутри древесина остается сырой, сохраняет свой объем. Наружные слои, подсыхая, съеживаются и, встречая сопротивление внутренних слоев, трескаются. Поэтому сушку ведут нарочито медленно, так, чтобы внутренние и наружные слои, по возможности, подсыхали бы одновременно. И на это уходят годы!
В сушильных цехах деревообрабатывающих заводов электроника произвела такой же переворот, как и в закалке стали.
Совершенно сырые доски, только что вышедшие из лесопильной рамы, укладывают на полки высокочастотной «этажерки». Включают ток. Минута, и доски окутываются паром. Еще несколько минут, и доски перестают парить: «электрическая лихорадка» полностью выгнала из них всю влагу.
Толстые дубовые брусья высыхают в течение нескольких часов, березовые — за 30 минут. Под действием токов высокой частоты древесина становится даже более прочной, чем после обычной сушки горячим воздухом.
Такая же техническая революция произошла и в сушильных цехах керамических заводов. Фарфоровые изоляторы для высоковольтных линий электропередач прежде выдерживались в сушилках неделями, так как размеры изоляторов велики, больше человеческого роста, и сушка велась осторожно, медленно, чтобы не получалось брака.
Высокочастотные установки ускорили сушку изоляторов в сотни раз.
Токи высокой частоты помогли спасти много ценнейших книг Государственной Публичной библиотеки им. Салтыкова-Щедрина. Во время блокады Ленинграда книги в нетопленых хранилищах отсырели. Разрушительная плесень поползла по переплетам и страницам. Высушить книги обычным способом было невозможно. Бумага сохнет плохо и, высыхая, коробится. Токи высокой частоты высушили книги без всякого вреда для бумаги, уничтожили плесень, а заодно и всех жучков-точильщиков, которые успели завестись в книгах.
Токами высокой частоты вытапливают жир из тресковой печени, сшивают без ниток ткани из различных сортов пластиката или искусственного волокна, нагревают пластмассы, вулканизируют автомобильные шины.
Применение токов высокой частоты в народном хозяйстве Советского Союза составляет важную часть той материально-технической базы коммунизма, которую создает советский народ в годы сталинских послевоенных пятилеток.
Глава тринадцатая. Впереди еще много открытий
Успехи электронной теории
Открытие электрона и обобщение сведений, накопленных о нем наукой, заставили ученых рассматривать во взаимной связи и отдельные электрические заряды, и электромагнитные поля, окружающие заряды.
Постепенно возводилось здание, электронной теории, установившей, что заряд и электромагнитное поле органически связаны друг с другом, зависят друг от друга, обусловливают друг друга.
Заряд всегда создает вокруг себя электрическое поле. Когда заряд движется, он создает, кроме того, и магнитное поле.
Внешнее электрическое или магнитное поле направляет движение электрона и изменяет его скорость. Оно может увеличивать и уменьшать энергию электрона.
При торможении электроны излучают электромагнитную энергию в виде электромагнитных волн и, наоборот, электромагнитные волны могут отдавать свою энергию электрону.
В итоге почти 50-летних исканий мы узнали, что электроны образуют ободочку атома, располагаясь в ней на определенных уровнях.
Заряд электрона равен 1,6∙10-19 кулона.
Масса электрона составляет 9,1∙10-28 грамма.
Электрон в 1836,6 раза легче протона — ядра водородного атома.
Электрон в невозбужденном водородном атоме находится от ядра на расстоянии в 0,529∙10-8 сантиметра.
Электронная теория объяснила и связала воедино разнообразнейшие проявления электрической энергии, осветила путь практической электронике.
Хотя увидеть электрон еще невозможно, но уже удается видеть след его в насыщенном водяном царе, — цепочку маленьких водяных капелек, прекрасно различимых при ярком освещении.
На рисунке 116 представлены сфотографированные следы того, как быстрая частица А в магнитном поле, столкнувшись с атомом, выбила из него электрон Б, движущийся со значительно меньшей скоростью и потому искрививший свой путь под действием магнитной силы, а сама пролетела дальше. Скорость А была столь велика, что магнитное поле могло лишь едва-едва искривить ее траекторию.
Рис. 116. Видеть электрон пока еще не удается, но можно видеть след, который он оставляет, пролетая в поле зрения прибора. На снимке: быстрая частица А, столкнувшись с атомом, выбила из него электрон Б, который летел медленно и потому описал в магнитном поле кривую линию.
Электроника стала одной из тех «волшебных палочек», с помощью которых человек творит чудеса, оставляющие далеко позади вымысел сказок.
Богатая фантазия русского народа, проникнутая глубокой верой во всемогущество творческого гения человека, позволяла героям наших сказок летать на ковре-самолете, разгуливать в семимильных сапогах, слушать, как растет трава и перешептываются звезды…
В наши дни, благодаря замечательным успехам науки и победам человека над природой, сказки становятся былью. У нас есть теперь и ковер-самолет, и семимильные сапоги — железные дороги, и послушный ветерок — радиосвязь, и волшебное зеркальце — телевизоры, и чудо-огонек — люминесцентная лампа.
Под влиянием успехов электронной теории некоторым ученым, не отрешившимся еще от своих идеалистических воззрений, стало казаться, что наука уже достигла своего предела.
У некоторых физиков сложилось представление, что электрон будто бы является наипростейшим элементом мироздания, все свойства которого исчерпываются его массой и зарядом.
В 1908 году, то есть на заре современных представлений об электроне и атоме, когда электронная теория только делала свои первые шаги, Владимир Ильич Ленин в своем гениальном произведении «Материализм и эмпириокритицизм» беспощадно разоблачил физиков-идеалистов, извращавших науку. Он указал на реакционность утверждений тех «ученых», которые вообразили, что, углубляясь в недра вещества, они уже «дошли до предела природы». В. И. Ленин писал: «…если вчера это углубление не шло дальше атома, сегодня — дальше электрона и эфира, то диалектический материализм настаивает на временном, относительном, приблизительном характере всех этих вех познания природы прогрессирующей наукой человека. Электрон так же неисчерпаем, как и атом, природа бесконечна…»[24]
Гениальное предвидение В. И. Ленина подтвердилось всем ходом развития науки. Ученые вслед за открытием электрона установили его место в атоме, открыли существование ядра атома и других простейших частиц.
В свете новых фактов электронная теория претерпевала серьезные изменения. В ней обнаружились глубокие противоречия, которые одно время даже казались неразрешимыми. Создатель электронной теории физик Лоренц однажды выразил сожаление, что он не умер раньше, чем обнаружились эти противоречия.