Нормальная физиология: конспект лекций - Страница 5

Изменить размер шрифта:

4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов:

1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов:

1) возбуждающие синапсы;

2) тормозящие синапсы.

3. По механизмам передачи возбуждения в синапсах:

1) химические;

2) электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов.

Различают несколько видов химических синапсов:

1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;

2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;

3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Особенность электрических синапсов заключается в том, что передача возбуждения осуществляется при помощи электрического тока. Таких синапсов в организме обнаружено мало.

Синапсы имеют ряд физиологических свойств:

1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

2. Механизмы передачи возбуждения в синапсах на примере мионеврального синапса

Мионевральный (нервно-мышечный) синапс – образован аксоном мотонейрона и мышечной клеткой.

Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану. После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинаптическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с пресинаптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холинэстеразой (ХЭ), которые находятся на постсинаптической мембране.

Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом:

ХР—ХЭ—ХР—ХЭ—ХР—ХЭ.

ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.

ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

3. Физиология медиаторов. Классификация и характеристика

Медиатор – это группа химических веществ, которая принимает участие в передаче возбуждения или торможения в химических синапсах с пресинаптической на постсинаптическую мембрану.

Критерии, по которым вещество относят к группе медиаторов:

1) вещество должно выделяться на пресинаптической мембране, терминали аксона;

2) в структурах синапса должны существовать ферменты, которые способствуют синтезу и распаду медиатора, а также должны быть рецепторы на постсинаптической мембране, которые взаимодействуют с медиатором;

3) вещество, претендующее на роль медиатора, должно при очень низкой своей концентрации передавать возбуждение с пресинаптической мембраны на постсинаптическую мембрану. Классификация медиаторов:

1) химическая, основанная на структуре медиатора;

2) функциональная, основанная на функции медиатора.

Химическая классификация.

1. Сложные эфиры – ацетилхолин (АХ).

2. Биогенные амины:

1) катехоламины (дофамин, норадреналин (НА), адреналин (А));

2) серотонин;

3) гистамин.

3. Аминокислоты:

1) гаммааминомасляная кислота (ГАМК);

2) глютаминовая кислота;

3) глицин;

4) аргинин.

4. Пептиды:

1) опиоидные пептиды:

а) метэнкефалин;

б) энкефалины;

в) лейэнкефалины;

2) вещество «P»;

3) вазоактивный интестинальный пептид;

4) соматостатин.

5. Пуриновые соединения: АТФ.

6. Вещества с минимальной молекулярной массой:

1) NO;

2) CO.

Функциональная классификация.

1. Возбуждающие медиаторы, вызывающие деполяризацию постсинаптической мембраны и образование возбуждающего постсинаптического потенциала:

1) АХ;

2) глютаминовая кислота;

3) аспарагиновая кислота.

2. Тормозящие медиаторы, вызывающие гиперполяризацию постсинаптической мембраны, после чего возникает тормозной постсинаптический потенциал, который генерирует процесс торможения:

1) ГАМК;

2) глицин;

3) вещество «P»;

4) дофамин;

5) серотонин;

6) АТФ.

Норадреналин, изонорадреналин, адреналин, гистамин являются как тормозными, так и возбуждающими.

АХ (ацетилхолин) является самым распространенным медиатором в ЦНС и в периферической нервной системе. Содержание АХ в различных структурах нервной системы неодинаково. С филогенетической точки зрения в более древних структурах нервной системы концентрация ацетилхолина выше, чем в молодых. АХ находится в тканях в двух состояниях: связан с белками или находится в свободном состоянии (активный медиатор находится только в этом состоянии).

АХ образуется из аминокислоты холин и ацетил-коэнзима А.

Медиаторами в адренэргических синапсах являются норадреналин, изонорадреналин, адреналин. Образование катехоламинов идет в везикулах терминали аксона, источником является аминокислота: фенилаланин (ФА).

ЛЕКЦИЯ № 6. Физиология центральной нервной системы

1. Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС

Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма. ЦНС обеспечивает оптимальные взаимоотношения организма с окружающей средой, устойчивость, целостность, оптимальный уровень жизнедеятельности организма.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com