Нанонауки. Невидимая революция - Страница 36
Блез Паскаль вообще обошелся без греческого языка, когда вопрошал об «анималкулах» (лат. анималкула — маленький зверь), то есть о тех крошечных существах, что обнаружили первые ученые-микроскописты. Позже Вольтер в своем сочинении «Микромегас» вывел самых разных героев — очень крупных и совсем мелких, размеры которых доходили или, вернее, нисходили до атомного масштаба. Главный персонаж по имени Микромегас (ростом в 8 льё, то есть примерно 30 км), уроженец планеты из системы Сириуса, знакомится с карликовым — рост всего 1000 туаз, около 1,8 км, — обитателем Сатурна, но затем оказывается, что «карлик» — лишь «промежуточное звено» между великим и малым. Эта парочка встречается с землянами, а это совсем уж «атомы», хотя именно они — главная приманка философской сказки Вольтера. Эти мелкие земляне умеют говорить и даже знают геометрию. Более того, Вольтер делает смелое предположение, что у крошечных землян может быть даже душа!
Впервые «нанно» как научный термин появился только в 1909 году, в Германии, когда на семинаре в Германском обществе зоологии выдающийся профессор зоологии университета в Киле Ханс Ломан предложил называть микроскопические водоросли, которые он наблюдал с помощью оптического микроскопа, «наннопланктоном», — на том основании, что греческое nannos — перевод немецкого слова Zwerg, означающего «карлик». То, что Ломан сохранил двойное «эн», существенно повлияло на участь приставки. До сего дня часть биологов сохраняет веру в то, что область науки, которой они занимаются, называется наннобиологией, и публикуют свои работы в «Журнале исследований наннопланктона» — Journal of Nannoplankton Research. В главе 5 упоминались и другие биологи — те, что в наши дни изучают наннобактерии — организмы, величина которых меньше 100 нм. Ломан придумывал свою приставку для обозначения объектов величиной меньше микрометра. В начале XX века единицей измерения, использовавшейся для описания величины молекул, служила миллионная доля миллиметра, именуемая «микромиллиметром», а по-французски и вовсе непроизносимое: «septième-centimètre», то есть «сантиметр в (отрицательной) седьмой степени». Изучение излучений, испускаемых газами или пропускаемых через газы, шло тогда вперед семимильными шагами. Примерно в то же время были открыты рентгеновские лучи — с длинами волн в тысячу раз меньше, чем у видимого света. И повестка дня властно потребовала изобретения новых обозначений для единиц измерения сверхмалых величин. Чтобы убедиться в этом, достаточно ознакомиться с отчетами о Нобелевских премиях по физике за 1900–1920 годы: сообщения о результатах пестрят нулями после запятой. В статьях, выходивших в те годы, длину волны рентгеновских лучей указывали в сантиметрах: например 0,000000001 см! И тогда было решено измерять длины волн в ангстремах — в честь шведского физика Андерса Юнаса Ангстрема, внесшего большой вклад в развитие спектроскопии. Среди прочего он составил подробную диаграмму солнечного излучения, найдя каждому оттенку этой многоцветной палитры свою длину волны и выражая их значения в десятимиллионных долях миллиметра (10-10 м). Этот множитель был определен как ангстрем (А) и в 1905 году утвержден в качестве единицы измерения.
Та же потребность в создании новых наименований множителей для единиц измерения, кратных метру, во второй раз побудила ученых вспомнить о приставке «нано». В октябре 1958 года во время заседания Международного комитета мер и весов было принято решение согласиться с предложением, с которым еще в 1956 году выступал советский ученый Г. Бурдун, и впредь именовать миллиардную долю метра нанометром. Члены комитета решили также писать одно «н», исходя из правила, по которому множителям единиц, больших метра, присваиваются греческие приставки, а если единица меньше метра, то множитель обозначается латинской приставкой. Так, префикс для множителя 1000, «кило», происходит от греческого «хили» (тысяча), а для тысячной — 10-3, «милли» — от латинского «миллесимус» (тысячная). В 1950-е годы были изобретены и другие приставки, произведенные от других корней: «гига» (109) — от греческого «гигас» (великан), «тера» (1012) — от греческого «террас» (чудо, чудовище). Следуя той же логике, международные законодатели предпочли латинский корень «нанус» (карлик) греческому «наннос» для префикса-множителя одной миллиардной. Кроме того, в ходу также «микро» (10-6) — производное от греческого «микрос» (маленький), а «пико» (10-12) — и вовсе от итальянского «пикколо» (маленький).
Эта путаница между греческим карликом с двумя «н», о котором вспомнил Ломан, и латинским карликом с одним «н» Международного комитета мер и весов породила немало недоразумений. В 1950-е годы заседал как-то Консультативный комитет по научной терминологии при Французской академии наук. Жорж Дефландр, бывший тогда директором лаборатории микропалеонтологии Практической школы высших исследований* (L’École pratique des hautes études), захотел выяснить мнение комитета касательно двух «н» в своевольно введенном в 1959 году термине «наннофоссил» (ископаемые небольшого размера): словечко придумали, имея в виду уже существующий «наннопланктон» и подобные ему обозначения. Декану медицинского факультета в Монпелье Гастону Жирару поручили провести необходимые этимологические разыскания, и он, поразмыслив, сделал заключение, что оба написания корректны. В конечном счете Консультативный комитет постановил: удвоение буквы «н» в префиксе определяется научной областью, использующей термин с этой приставкой. Так, «палеонтология и микропалеонтология вправе писать приставку с двумя „н“, тогда как физика (в частности, метрология), медицина и физиология ограничиваются написанием одного „н“».
Но и это официально закрепленное разделение между «нано» и «нанно» не устранило двусмысленностей, возникающих из-за того, что «нано» понимается и просто как еще одно слово для чего-то немыслимо малого, и как точный научный термин со значением «одна миллиардная». Наоборот, неразберихи возникло еще больше. И она стала как бы узаконенной. Спору нет, откуда заседавшие тогда в Консультативном комитете знали, что прогресс физики, технологии и химии толкнет исследователей в направлении наномасштабов, а толки на этот счет привлекут внимание к злополучной приставке самой широкой публики. Сейчас не то, и даже вид красочных картинок конца 1950-х годов с атомами и молекулами теперь скорее удивляет. А надо бы не дивиться, а тревожиться: спрос на научно-фантастическое чтиво упал, не говоря о научной или хотя бы научно-популярной литературе. Но не так давно едва ли не все очень внимательно следили за успехами науки, нетерпеливо дожидаясь от нее новых чудес и радуясь покорению Луны, особенно полетам пилотируемых «Аполлонов». Парадоксально: полет «Аполлона» на Луну не состоялся бы, не будь миниатюризации электронных устройств и деталей, без знаменитых интегральных схем. Но время наномасштабов, миниатюризации до нанометра еще не пришло…
Однако уже в начале 1960-х физики научились чертить на поверхностях различных материалов царапины шириной в 100 нм. Этим достижениям, конечно, было далеко до высоких результатов метаболизма (обмена веществ) в живых организмах. Многих физиков завораживали молекулярные процессы, которые казались образцом, по которому стоило бы строить самые совершенные машины. Открытие структуры ДНК в 1953 году породило надежды на возможность накопления больших объемов информации, умещающихся в небольшом количестве атомов. Со своей стороны, биологи-молекулярщики тоже подражали «чужим манерам», заимствуя идеи у технологии и кибернетики, после чего пытались истолковать функционирование генетики, уподобляя ее какому-то машинному механизму. Макромолекула — объект, что и говорить, немыслимо маленький, невидимый не только невооруженным глазом, но и в оптический микроскоп, иначе говоря, нанообъект в своем роде. И эта же молекула содержит тысячи атомов — и она по размеру много больше, чем нанометр. Чересчур она велика для нашей крошки «нано» — той, что с одним «н». К концу 1970-х прижился новый термин — «мезоскопическая физика», подразумевавший изучение физики объектов величиной с макромолекулу, то есть укладывающихся в пределы 10-100 нм. В 1974 году химик Ави Авирам, работавший тогда в исследовательских лабораториях IBM под Нью-Йорком, вообразил молекулярный диод, то есть электронную деталь, проводящую ток только в одном направлении. И этот компонент должен был состоять только из одной молекулы, масса которой не превышала бы массу белка! Так что вслед за молекулярной биологией, мезоскопическая физика и молекулярная электроника тоже, и столь же неудержимо, устремились в мир «на дне». Между тем ни одну из соперничающих приставок — ни «нанно», ни «нано» — не вспоминали тогда на научных конференциях и семинарах. Возвращение приставки на публичную арену датируется 1974 годом, а произошло это в Японии. Так история «нано» началась в третий раз.