На волне Вселенной. Шрёдингер. Квантовые парадоксы - Страница 6

Изменить размер шрифта:
На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_6.jpg

Высота расположения пробки соответствует высоте волны в той точке, где она находится. Если волна начинает цикл подъемов и спадов, пробка повторяет их. Вот почему короткая, энергичная λ соответствует повышенной ν (пробка часто проходит одни и те же позиции), а длинная, спокойная λ соответствует низкой ν (пробка проходит эти позиции с меньшей частотой). Очевидно, что волны с короткой λ вызывают более значительное волнение, но потребляют при этом больше энергии, чем волны с длинной λ.

Так же как распределение веса у населения может быть проиллюстрировано графиком, можно графически представить распределение плотности энергии для каждой длины волны при заданной температуре. Такой тип представления называется энергетическим спектром.

Для изучения взаимосвязей материи и света нужно было создать экспериментальную ситуацию, свободную от взаимодействий с другими явлениями, которые могут усложнить анализ. Физики приступили к поискам экспериментального поля, в котором атомы и электромагнитные волны могли бы свободно взаимодействовать. Решение дали печи. Когда печь, изолированная от окружения, нагревается и достигает равновесного состояния, она испускает универсальный спектр излучения, зависящий исключительно от температуры. Каким бы ни были материал стенок печи, ее форма и размеры, все печи при одинаковой температуре излучают один и тот же спектр. Этот универсальный спектр выражает глубокое и прямое взаимодействие между материей и излучением.

В лаборатории при открытии печи измеряется спектр, показанный на рисунке 2. Видно, как энергия концентрируется вокруг самой высокой точки каждой кривой и как λ, в соответствии с этим экстремумом, смещается к более короткой длине волны (более энергетичной) по мере возрастания температуры (7). Это смещение было продемонстрировано в 1893 году немецким физиком Вильгельмом Вином и показано на графике пунктирной линией: максимальная λ обратно пропорциональна Т. С увеличением температуры максимальная λ уменьшается. Речь идет о прогнозируемой тенденции: короткие длины волн соответствуют большому количеству энергии и высокой температуре.

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_7.jpg

РИС. 2

При наблюдаемых температурах большая часть света находится за пределами видимого спектра; ситуация меняется, когда Т растет, а λ уменьшается (рисунок 3). Мы можем вывести из этих кривых другой важный результат, связанный с эмиссией излучения из твердых тел: полная плотность энергии, излучаемой печью (все, что находится ниже кривой), прямо пропорциональна четвертой степени температуры тела, выраженной в градусах Кельвина. Это закон Стефана — Больцмана, открытый эмпирически в лаборатории австрийского физика Йозефа Стефана и продемонстрированный пять лет спустя с помощью аргументов термодинамики его учеником Людвигом Больцманом.

На рисунке 4 зона под кривой, соответствующая 6000 К, в 81 раз больше, чем та, что ограничена спектром излучения до 2000 К:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_8.jpg

Спектр излучения печи определяет границы поля, на котором будет рассмотрено, насколько эффективно классическая физика может теоретически обосновать эти кривые при моделировании поведения газа и света. Этот вызов согласился принять Макс Планк — прусский ученый, от которого, после 40 лет спокойной работы, никто не ожидал великих свершений.

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_9.jpg

РИС. 3

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_10.jpg

РИС. 4

Революция поневоле

Хотя отдельные предпосылки можно найти и в более ранних работах, авторство квантовой механики связывают с именем Макса Планка, который 14 декабря 1900 года представил Немецкому физическому обществу результаты своих исследований в статье под названием «К теории распределения энергии излучения нормального спектра». Это исследование, появившееся в последний месяц последнего года XIX века, поставило радостную фермату над целым веком развития науки, хотя описанное в нем открытие вскоре обрушило все основы научного знания.

До этих пор Планк в своей научной карьере не занимался изучением и применением второго закона термодинамики. Его любопытство было направлено на поиски абсолютных законов, таких принципов, которые сохраняются во все времена. Именно поэтому универсальное излучение печи привлекло внимание ученого, которого часто называют революционером поневоле — и определение не отдает должного упорству исследователя. Из всех ученых, содействовавших рождению квантовой теории, Планк, без сомнений, следовал наиболее консервативным принципам. Так, в течение многих лет он отрицал существование атомов и защищал непрерывность материи, и эта позиция была понятна, ведь специальность Планка — классическая термодинамика — не углублялась в недра изучаемых систем. И учитывая это, выглядит настоящей иронией судьбы тот факт, что именно Планку приписывают ответственность за нанесение последнего удара по классической непрерывности.

Также ученый выступал против любой статистической интерпретации второго закона, он был убежден в том, что увеличение энтропии абсолютно, хотя анархический характер этой идеи внушал Планку некоторое отвращение. Стремление к знаниям, смешанное с предрассудками, ставило его в сложное положение. В статьях ученого можно заметить осторожность профессионального игрока в покер, который рискует целым состоянием, и разгадать его блеф не всегда просто. В октябре 1900 года Планк открыл математическую кривую спектра излучения, видимую на предыдущем рисунке. Он обнаружил функцию, зависящую от частоты и температуры, что привело — при подстановке числовых значений v и Т — к тем же кривым, что были получены в лаборатории. Так ученый обнаружил математическую модель закона излучения, который он искал. Открытие само по себе было заметным успехом, но амбиции Планка не остановились на этой простой формуле: он хотел сделать ее следствием физической картины мира, в котором ее можно было бы последовательно применять. Ученый безоговорочно признавал свой собственный постулат: «С того момента, как я сформулировал [закон], я старался придать ему физический смысл». Едва ли он сам понимал, насколько обескураживающим будет этот искомый смысл.

Это одна из наиболее важных и трансцендентальных интерполяций в истории физики; она обнаруживает почти сверхъестественную физическую интуицию.

Макс Борн о формуле излучения, открытой Планком

С самого начала Планку не хватало важных элементов, которые позволили бы понять, что происходит внутри печи.

Например, на тот момент, когда Планк решил обратиться к задаче, о существовании нейтронов и протонов было еще неизвестно. Электроны вошли в физику лишь за три года до этого, в 1897 году.

Планк мог опираться на два важных достижения физики XIX века — термодинамику и электродинамику Максвелла. Шотландский математик заявил, что колебание электрического заряда генерирует электромагнитные волны — именно так работают антенны, которые произвели настоящую революцию в мире телекоммуникаций (сегодня нас окружают микроволны, испускаемые нашими мобильными телефонами).

В радиоантенне электромагнитная волна приводит в движение электроны, которые встречает на своем пути. Таким образом, стенки печи взаимодействуют с излучением благодаря возвратно-поступательному движению электронов. Последние остаются в своих атомах и колеблются вокруг фиксированных точек. В статье Планк не упоминает ни об электронах, ни о материи и говорит только о «колебании» (осцилляторе, генераторе колебаний).

Пустая и остывшая печь не испускает никакого излучения. Нагревание системы мгновенно вызывает возбуждение электронов и испускание электромагнитных волн. Эти волны распространяются, пересекают пространство печи и в конечном счете сталкиваются с другими стенками и другими электронами, при этом ведут себя как принимающие и излучающие антенны. Взаимодействие между светом и материей началось. Через некоторое время достигается стабильная ситуация: печь наполняется излучением, разделенным на разные частоты в зависимости от уже упомянутой спектральной кривой.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com