Н. И. Лобачевский. Его жизнь и научная деятельность - Страница 18
Заметим, что в опыте он искал проверки, а не доказательства постулата.
Наибольшие доступные человеку расстояния – это те, которые дают ему астрономические наблюдения. Лобачевский убедился, что для этих расстояний результаты наблюдений совместимы с постулатом Евклида. Из этого следует, что и отсутствие логического доказательства этого постулата нисколько не подрывает истинности геометрии для доступных нам расстояний, а вместе с тем сохраняют свою истинность законы механики и физики, на ней основанные.
Но человеку свойственно задаваться мыслью: «Что там, за пределами доступных нам расстояний? Для тех, которые мы называем бесконечными, имеют ли абсолютное значение свойства нашего пространства?» Вот вопрос, который предложил себе Лобачевский.
Лобачевский построил свою геометрию логически, приняв известные нам аксиомы, относящиеся к прямой и к плоскости, и допустив как гипотезу, что сумма углов треугольника менее двух прямых. Но и при таком допущении, которое может иметь место только для пространств, размерами своими значительно превосходящих нашу солнечную систему, геометрия Лобачевского для доступных нам измерений дает те же результаты, что и геометрия Евклида. Совершенно правильно или, вернее, основательно один геометр назвал геометрию Лобачевского звездной геометрией. О бесконечных же расстояниях можно составить себе понятие, если вспомнить, что существуют звезды, от которых свет доходит до Земли тысячи лет. Итак, геометрия Лобачевского включает в себя геометрию Евклида не как частный, а как особый случай. В этом смысле первую можно назвать обобщением геометрии нам известной. Теперь возникает вопрос, принадлежит ли Лобачевскому изобретение четвертого измерения? Нисколько. Геометрия четырех и многих измерений создана была немецким математиком, учеником Гаусса, Риманном. Изучение свойств пространств в общем виде составляет теперь неевклидову геометрию, или геометрию Лобачевского. Пространство Лобачевского есть пространство трех измерений, отличающееся от нашего тем, что в нем не имеет места постулат Евклида. Свойства этого пространства в настоящее время уясняются при допущении четвертого измерения. Но этот шаг принадлежит уже последователям Лобачевского. Поэтому к неевклидовой геометрии примыкает и составляет как бы продолжение ее геометрия многих измерений, которая, придавая большую общность и отвлеченность многим вопросам геометрии, в то же время является незаменимым пособием при решении многих вопросов анализа.
Риманн в трактате «О гипотезах, лежащих в основе геометрии» высказал мысль, что геометрия Евклида не составляет необходимого следствия наших понятий о пространстве вообще, но есть результат опыта, гипотез, которые находят себе подтверждение в пределах наших наблюдений. Риманн дал общие формулы, воспользовавшись которыми и применяя которые к исследованию так называемой псевдосферической поверхности (бокального вида), итальянский математик Бельтрами нашел, что все свойства линий и фигур геометрии Лобачевского принадлежат линиям и фигурам на этой поверхности. Вот какое отношение имела геометрия многих измерений к геометрии Лобачевского.
Труды Бельтрами привели к следующим важным заключениям: 1) геометрия двух измерений Лобачевского не есть воображаемая геометрия, а имеет объективное существование и вполне реальный характер; 2) то, что в геометрии Лобачевского соответствует нашей плоскости, есть псевдосферическая (бокальная) поверхность, а то, что он называет прямой линией, – геодезическая линия (кратчайшее расстояние между двумя точками) этой поверхности.
Существование геометрии двух измерений, отличной от нашей планиметрии, легко себе представить. Вообразим себе шаровую поверхность, эллиптическую или какую-нибудь вогнутую, и представим себе на ней линии и фигуры. Выпуклые и вогнутые поверхности называются кривыми поверхностями.
Наша плоскость, прямая поверхность, не имеет кривизны, и в математике принято говорить: кривизна плоскости равна нулю. Аналогично этому наше пространство не имеет кривизны. Кривые же поверхности имеют или положительную, или отрицательную кривизну. Бокальная поверхность имеет отрицательную кривизну, а эллиптическая – положительную. Аналогично этому пространству Лобачевского приписывают отрицательную кривизну.
Пространство Лобачевского, как отличающееся существенно от нашего, нельзя себе представить, оно только мыслимо. То же относится и к пространствам четырех и многих измерений.
К исследованиям Риманна тесно примыкают труды Гельмгольца, который справедливо говорит: «В то время, как Риманн вступил в эту новую область знания, отправляясь от самых общих и основных вопросов, я сам пришел к подобным же выводам».
Риманн исходил в своих исследованиях от алгебраического общего выражения расстояния между двумя бесконечно близкими точками и отсюда вывел различные свойства пространств; Гельмгольц же, исходя от факта возможности движения фигур и тел в нашем пространстве, вывел в конце концов формулу Риманна. Обладая умом в высшей степени ясным, Гельмгольц как бы осветил нам всю глубину мыслей Риманна.
В данном же случае для нас особенно важно, что, выясняя нам происхождение геометрических аксиом, он косвенно определил, в каком отношении находится геометрия Лобачевского к нашей.
По мнению Гельмгольца, главным затруднением в чисто геометрических исследованиях служит легкость, с которой мы здесь смешиваем ежедневный опыт с логическими процессами мысли. Гельмгольц доказывает, что в геометрии Евклида многое опирается на опыт и не может быть выведено логическим путем. Замечательно, что задачи построений играют в геометрии такую существенную роль. С первого взгляда они кажутся не более как практическими действиями, на самом же деле они имеют силу положений. Чтобы сделать очевидным равенство геометрических фигур, обыкновенно их накладывают мысленно одну на другую. В возможности такого положения мы с раннего возраста убеждаемся фактически. Гельмгольц доказывает также, что особенные характеристические черты нашего пространства суть опытного происхождения.
На основании физиологических данных, относящихся к устройству наших органов чувств, Гельмгольц приходит к очень важному для нас убеждению, что все наши способности к чувственным восприятиям распространяются на Евклидово пространство трех измерений, всякое же пространство, хотя и трех измерений, но имеющее кривизну, или пространство с числом измерений более трех, мы в силу самой своей организации не в состоянии себе представить.
Итак, учение Гельмгольца, которого справедливо считают гением нашего столетия, подтверждает, со своей стороны, результаты, добытые математиками Риманном и Лобачевским. Но если мы не в состоянии никакими естественными и искусственными средствами получить это представление, то все же геометрия двух измерений, отличная от нашей, доступна нашему представлению. Гельмгольц дает нам средства вникнуть в суть геометрии псевдосферической и сферической, прибегая к чрезвычайно остроумным приемам, останавливаться на которых мы, конечно, не будем. В данном случае для нас самое главное – это наглядная параллель между происхождением опытных и логических истин.
Пользуясь выводами Гельмгольца, легко уяснить, как надобно понимать пространство более трех измерений. Гельмгольц задавался вопросом, какова была бы геометрия у существ, которые знали бы по опыту только два измерения, то есть жили бы в плоскости, вполне с ней совмещаясь. Будучи плоскими, такие существа знали бы всю планиметрию в том именно виде, в каком мы – существа трех измерений – знаем ее теперь; но те же самые гипотетические существа не имели бы ни малейшего представления о третьем измерении, и вся наша стереометрия не могла бы иметь для них ничего конкретного. Тем не менее эти плоские существа, лишенные возможности действительно построить стереометрию, могли бы, пользуясь анализом, изучить ее аналитически. В совершенно таком же положении находимся мы, существа трех измерений, по отношению к пространству четырех измерений и вообще отличному от нашего: мы не можем создать синтетическую геометрию этого пространства, но ничто не препятствует нам изучить его свойства аналитически. Лобачевский первый дал опыт изучения такого пространства, которое лежит вне нашего опыта. Для людей, не владеющих математическим анализом, не существует ни пространство Лобачевского, ни геометрия многих измерений, как не существуют видимые только в телескоп небесные светила для людей, смотрящих на небо невооруженным глазом.