Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Страница 27

Изменить размер шрифта:

Геометрическое решето, разработанное Юрием Матиясевичем и Борисом Стечкиным для поиска простых чисел (они отмечены серыми точками на рисунке). Обратите внимание: через них не проходит ни один отрезок.

В некотором смысле это улучшенная версия решета Эратосфена. Когда мы говорим «улучшенная», мы на самом деле имеем в виду «обновленная», так как решето Аткина, строго говоря, уступает решету Эратосфена. Эта версия устраняет числа, кратные не простым числам, а только квадратам простых чисел.

Конечно, в идеале хотелось бы получить формулу, которая связывает каждое натуральное число n с n-м простым числом. Мы видели, что математики пытались найти эту формулу на протяжении по крайней мере 3000 лет. Функции, которые у нас имеются, позволяют вычислять простые числа практическим способом. Например, доказано (теорема Вильсона), что р является простым числом тогда и только тогда, когда (р — 1)! 

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - a.jpg_7
—1 (mod р). Однако, как мы упоминали выше, любая формула, содержащая факториал, является недопустимой для компьютерных алгоритмов, потому что быстрый рост функции будет сильно замедлять вычисления.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _103.jpg

Существуют также многочлены для «генерации» простых чисел, подобные тем, что использовал Эйлер, чтобы получить список 40 простых чисел с помощью функции f(х) = х2 + х + 41, которая генерирует простые числа для каждого значения х.

Например,

х = 0; f(0) = 0 + 0 +41 = 41;

х = 1; f(1) = 1 + 1 + 41 = 43;

х = 2; f(2) = 4 + 2 + 41 = 47.

Однако формула не работает начиная со значений 41 и 42, при подставлении которых получаются составные числа:

х = 41; f(41) = 1681 + 41 + 41 = 1763;

х = 42; f(42) = 1764 + 42 + 42 = 1848.

Эйлер продолжил изучение этого многочлена и пришел к выводу, что многочлен более общего вида, х2х + q, будет генерировать простые числа для значений х между 0 и q — 2. Существуют также многочлены, открытые Джонсом, Сато, Вада и Вьенсом в 1976 г., которые генерируют только простые числа при подставлении значений их переменных. Эти довольно сложные многочлены содержат 28 переменных. Они не представляют большой практической пользы: если получается положительное значение, оно является простым числом, но в большинстве случаев (почти всегда) результат является отрицательным числом.

В настоящее время большинство известных простых чисел (мы всегда имеем в виду большие простые числа) являются так называемыми простыми числами Мерсенна. Причина этого — в наличии теста простоты Люка-Лемера, который эффективно работает для чисел такого типа. Напомним, что число Мерсенна имеет вид 2 — 1. Когда такое число является простым, оно называется «простым числом Мерсенна». На момент 14 апреля 2011 г. известно только 47 простых чисел Мерсенна. Самым большим из них является число 243112609—1, которое имеет почти 13 млн цифр.

* * *

ПРОЕКТ GIMPS

Широкомасштабный интернет-проект по поиску простых чисел Мерсенна (GIMPSGreat Internet Mersenne Prime Search) начался по инициативе Джорджа Вольтмана и использует сеть соединенных через интернет персональных компьютеров добровольцев (любой желающий может зарегистрироваться). Эти компьютеры работают параллельно и в совокупности представляют собой вычислительные мощности, превосходящие возможности любого суперкомпьютера. Каждый доброволец устанавливает соответствующее программное обеспечение, и его компьютер выполняет вычисления в периоды простоя. Проект был запущен в 1997 г., а к августу 2009 г. было найдено в общей сложности 12 новых простых чисел Мерсенна. Фонд Электронных Рубежей (EFFElectronic Frontier Foundation) предложил приз в 150 тысяч долларов США за нахождение простого числа, состоящего по меньшей мере из 10 миллионов десятичных цифр. 23 августа 2008 г. приз был присужден Эдсону Смиту из Калифорнийского университета за нахождение числа 243112609 — 1.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _104.jpg

Логотип Фонда Электронных Рубежей.

* * *

Как определить, является ли число простым

Единственный способ узнать наверняка — это разделить данное число на все предшествующие ему числа. Если оно не делится ни на одно из них, то оно является простым. Как мы видели в предыдущей главе, извлечение квадратного корня из числа может значительно сократить количество работы. Это хороший метод для небольших чисел и вычислений вручную. Например, мы хотим узнать, является ли число 101 простым или составным. Знание правил делимости может помочь нам избежать ненужной работы. Очевидно, что 101 не делится на 2, так как в противном случае его последняя цифра была бы четной или нулем. Не делится оно и на 3, так как сумма его цифр не делится на 3 (1 + 0 + 1 = 2). Также 101 не делится на 5, иначе оно оканчивалось бы на 0 или на 5. Мы также можем отбросить 4, 6 и 9, так как они кратны 2 или 3. Если мы попытаемся разделить 101 на 7, мы получим 14 и остаток 3. Значит, оно не делится и на 7. Следующее число, которое стоит проверить, — 11 (101, очевидно, не делится на 10). Деление на 11 дает 9 и остаток 2. Здесь мы можем остановиться и сказать, что 101 является простым числом, так как квадратный корень из 101 составляет примерно 10. Это означает, что наше число уже не будет делиться на любые другие оставшиеся числа, меньшие 101.

Этот метод называется перебором делителей и является самым простым и самым надежным. Проблема заключается в том, что он не оправдывает себя в случае очень больших чисел, даже если используется компьютер. Заметим, что для числа из 50 цифр потребуется проверка всех чисел длиной до 25 цифр, что более или менее соответствует корню из данного числа. Компьютеру, который способен выполнять миллиард операций деления в секунду, потребуется более 300 млн лет, чтобы закончить проверку, а к тому времени, вполне вероятно, человечество исчезнет с лица Земли!

Во всяком случае, этот метод работает достаточно хорошо для составного числа, если один из его делителей не является слишком большим. Следует иметь в виду, что для любого числа n вероятность того, что число 2 является одним из его делителей, составляет 50 %, а вероятность того, что делителем является число 3, составляет 33 % и так далее.

С другой стороны, скорость и объем памяти современных компьютеров значительно выросли, так что поиск простого числа в длинном списке иногда более эффективен, чем сложный процесс определения, является ли данное число простым.

Псевдопростые числа

В тестах простоты наиболее часто используется малая теорема Ферма. Напомним, что эта теорема гласит: «Если р — простое число, то не существует такого числа а у меньшего р (а и р взаимно просты), что ap-1—1 дает при делении на р отличный от нуля остаток».

Теорема имеет ограничения, поскольку, как мы видели, она дает необходимое, но не достаточное условие. Например, если взять р = 7, мы видим, что З6 — 1 делится на 7. Нет никакой гарантии, что 7 — простое число (мы-то знаем, что это простое число, потому что взяли для примера небольшие числа, но мы должны представить, что имеем дело с большими числами). Однако если взять р = 8, мы видим, что при делении З7 — 1 на 8 получается 273,25, а значит, остаток не ноль. Теперь мы уверены, что 8 — не простое число (не находя его делителей).

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com