Межпланетные перевозчики тектитов - Страница 2

Изменить размер шрифта:

Приняв ГКТ, мы можем объяснить теперь, что отсутствие космогенных изотопов в тектитах связано с их экранировкой от космического излучения толщей кометных льдов; что раздробленность тектитов, а также наличие на их поверхности следов оплавления - следствие аэродинамического торможения в земной атмосфере кометных ядер; что разница между абсолютным возрастом тектитов и геологическим возрастом земных пород, вмещающих их, есть не что иное, как время пребывания тектитов, а следовательно, и несущих их кометных ядер в космическом пространстве.

ТУНГУССКИЕ ТЕКТИТЫ? Среди множества гипотез о природе Тунгусского космического тела наибольшее распространение получила лишь одна, согласно которой это было ядро небольшой кометы. А раз так, то есть все основания предполагать, что на месте катастрофы должны быть тектиты. Приведем еще два довода в пользу этого.

Первый. Часть небольших силикатных шариков, найденных в торфяном слое на месте Тунгусской катастрофы, по своему химическому составу очень близка к обнаруженным в Лаосе тек- титан типа "муонг-нонг".

Второй. Как уверяют очевидцы Туигусской катастрофы, они находили в свежих ямах "всякие камешки". Это вполне могли быть тектиты.

Почему же тунгусские тектиты до сих пор не обнаружены? Причин, на мой взгляд, несколько.

Во-первых, вопрос об их организованных поисках пока вообще не ставился. А.если и возникала такая мысль, то тут же и отвергалась. Например, в 1966 году известный специалист по тек- титам Г. Г. Воробьев написал (будучи сторонником ударного механизма происхождения тектитов) следующее: "Может быть, в районе Подкаменной Тунгуски следует поискать тектиты? Думается, что нет: там сплошные болота и, повидимому, отсутствуют скальные породы".

Во-вторых, слой грунта, на который могли выпасть тектиты, сейчас находится уже на глубине 30 см и более.

МОДЕЛИ ВЗРЫВА. Как же выглядела, хотя бы приблизительно, общая картина Тунгусской катастрофы - ведь от этого впрямую зависит дальнейшая судьба кометного вещества. Рассмотрим модели разрушения крупного метеорного тела при его торможении в атмосфере. В 1964 году доктор технических наук профессор Г. И. Покровский предположил, что это разрушение взрывоподобное, происходит в ограниченном объеме пространства (так называемом "конусе разлета"). Оно идет до тех пор, пока скорость обломков не снизится до определенного предела. Вся их кинетическая энергия уйдет на образование ударной волны в атмосфере. Свой путь обломки завершают по баллистическим траекториям, причем часть их испаряется, другая же достигает поверхности Земли. В работе, опубликованной в 1976 году доктором физико-математических наук С. С. Григоряном, детально рассматривается механизм такого разрушения. В частности, согласно его модели зона дробления распространяется в материале метеорного тела со скоростью звука.

Растекаясь от центра лобовой поверхности к периферии, смесь осколков, жидкости, пара и пыли сносится назад, а попадая в набегающий поток, практически мгновенно (за исключением разве что крупных обломков) тормозится. При этом выделяется колоссальная энергия, и за дробящимся на лету телом следует как бы непрерывный взрыв, который порождает сильную ударную волну. Поскольку максимальное количество энергии выделяется ближе к конечному участку дробления, там оно идет интенсивнее всего. Уцелевшие обломки и "компактный остаток" центрального тела формирует "струю обломков".

Последние, испытывая давление со стороны расширяющихся газов в зоне взрыва, начнут изменять направление своего полета. Чем меньше обломок, тем больше отклонится его траектория от линии полета основного тела. Падение же наиболее крупных и даже "компактного остатй" естественно ожидать в районе пересечения оси "струи обломков" с земной поверхностью.

Ну а если кометное ядро не монолитно? Например, академик В. Г. Фесенков считал, что оно представляет собой плотный рой тел. Согласно исследованиям доктора технических наук К. П. Станюковича и кандидата физико-математических наук В. А. Бронштэ- на, такой рой, тормозясь в атмосфере, растягивается вдоль траектории. Тела разрушаются путем испарения, процесс выпадения обломков примерно тот же.

ПРИЗЕМЛЕНИЕ ТЕКТИТОВ. Если тектиты транспортируются внутри ледяных обломков кометы, то в случае благоприятного - с малой скоростью приземления на мягкий грунт льды, растаяв, оставят их на поверхности Земли в полной сохранности, в том числе и чрезвычайно хрупкие экземпляры. Чем крупнее обломки, тем больше скорость их полета. Особо крупные приведут к образованию ударных кратеров (воронок), поэтому тектиты следует искать как в самих воронках, так и в зоне разлета ледяных осколков. Естественно, что при падении на скальные породы тектиты раздробятся.

Второй их путь - выпадение в виде "града" при разрушении кометного ядра в атмосфере. В этом случае тектиты, освободившись от ледового плена и пролетев" до так называемой "области задержки" (для средних экземпляров массой около 10 г - это первые сотни метров), выпадают на Землю редким стеклянным градом. В зависимости от начальной скорости полета они могут сохранить как первозданный вид, так и подвергнуться аэродинамическому оплавлению (абляции), тем большему, чем выше скорость. Таким образом, ГКТ и, в частности, рассмотренные механизмы выпадения зактитов позволяют объяснить многие, доселе не нашедшие толкования, особенности в строении тектитных полей. Например, характерная скученность образцов в центральной части тектитного поля определяется местом падения "компактного остатка" и наиболее крупных льдин; находки групповых захоронений тектитов связаны с падением массивных ледяных обломков; наконец, обнаружение как раздробленных, так и целых, но чрезвычайно хрупких "хвостатых" образцов объясняется их выпадением на Землю в ледяной упаковке.

ГДЕ ИХ ИСКАТЬ? Теперь, предположив возможные пути приземления тектитов, можно не только наметить размеры предполагаемого Тунгусского тектитного поля - оно должно соответствовать площади проекции "струи обломков" на земную поверхность.- но и выделить на нем наиболее "текти- тоносные" места. Так, в районе пересечения оси струи обломков с поверхностью (назовем его зоной А) следует ожидать больше всего тектитных групп. В этой связи отметим, что в районе горы Острой ряд исследователей обнаружили явно выраженную космохимическую аномалию "катастрофного" слоя торфа; другие определили его как место выпадения "большого метеоритного дождя" при угле наклона траектории Тунгусского тела в 40. Такой же угол наклона был получен в расчетах доктора физико-математических наук В. П. Коробей- никова и других ученых, исследовавших математическую модель Тунгусского взрыва по характеру вывала леса. Все это наводит на мысль, что район горы Острой может оказаться центром зоны А.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com