Максимум. Как достичь личного совершенства с помощью современных научных открытий - Страница 11
Удивительная память и отличные навыки навигации лондонских таксистов привели к тому, что ими заинтересовались многие ученые, в особенности психологи, изучающие процессы обучения (в частности обучения навигационным навыкам). Наиболее полное исследование лондонских таксистов, которое поможет нам понять, как упражнения влияют на мозг, было проведено Элеанор Макгвайр, нейробиологом из Университетского колледжа Лондона.
В одной из своих ранних работ, опубликованной в 2000 году, Макгвайр при помощи МРТ сравнила снимки мозга 16 таксистов-мужчин и 50 мужчин, занятых в других областях. В первую очередь Макгвайр интересовала область гиппокампа – части мозга, отвечающей в том числе за формирование воспоминаний. Гиппокамп активнее всего задействуется для определения мозгом положения в пространстве, а также когда человек пытается вспомнить, где находится тот или иной объект. (Собственно говоря, у человека даже два гиппокампа – по одному с каждой стороны мозга.) Например, у некоторых видов птиц, которые запасают корм в разных местах, гиппокамп гораздо больше, чем у тех птиц, которые этого не делают. При этом у некоторых видов птиц в зависимости от их опыта запасания и поиска пищи гиппокамп может увеличиваться до 30 % от первоначального размера. Но работает ли это так же у людей?
Во время своего исследования Макгвайр обнаружила, что задняя часть гиппокампа таксистов гораздо больше, чем у других участников эксперимента[18]. При этом чем дольше человек работал таксистом, тем крупнее был задний гиппокамп[19]. В другой работе, опубликованной несколько лет спустя, Макгвайр сравнила снимки мозга лондонских таксистов со снимками мозга лондонских водителей автобуса[20]. Как и таксисты, водители автобусов весь день проводили в разъездах по Лондону, однако использовали при этом один и тот же маршрут и не имели возможности определить наилучший маршрут между пунктами А и Б. Макгвайр выяснила, что задний гиппокамп у таксистов значительно больше. Из этого следовал логичный вывод: разница в размере заднего гиппокампа связана не с навыком вождения, а с умением ориентироваться в пространстве – необходимым для таксистов навыком.
Правда, этому могло быть и другое объяснение: возможно, исследуемые таксисты от рождения обладали более крупным гиппокампом и оттого лучше ориентировались в городе. В таком случае получалось, что во время сложного экзаменационного процесса попросту отсеивались менее подходящие кандидаты и оставались только те, кто от природы обладал склонностью к ориентации в лабиринтах лондонских улиц.
Макгвайр подошла к решению этой проблемы очень просто: она начала изучать группу водителей, которые хотели стать таксистами. Она следила за кандидатами с того момента, как они приступили к подготовке к экзамену, и до тех пор, пока они не проваливали или успешно не сдавали его. В исследовании участвовали 79 водителей-мужчин, а также контрольная группа из 31 участника того же возраста. В начале исследования всем участникам сделали МРТ, которое не показало никаких различий в размере гиппокампа между контрольной группой и будущими таксистами.
Макгвайр вновь исследовала две группы спустя четыре года. За это время 41 участник получил лицензию таксиста, а 38 провалили экзамен или вовсе не стали его сдавать. Таким образом, испытуемые разделились на три группы: новоявленные таксисты, которые достаточно хорошо знали Лондон, чтобы сдать экзамен; провалившие экзамен участники, и мужчины из контрольной группы, никогда не готовившиеся к экзамену[21]. Все участники в очередной раз прошли через МРТ, и затем Макгвайр определила размер заднего гиппокампа у каждого из них.
Результаты ее исследований никого не удивили бы, замеряй она размер бицепсов у бодибилдеров. Но тут речь шла о мозге, и научная общественность была поражена: у получивших лицензию водителей задний гиппокамп значительно увеличился. При этом у не сдавших экзамен участников и членов контрольной группы, вовсе не намеренных становиться таксистами, гиппокамп за четыре года не изменился. Годы досконального изучения Лондона привели к росту той части мозга, что отвечает за расчет маршрута из одной точки в другую.
Опубликованное в 2011 году исследование Макгвайр – самое яркое доказательство того, что человеческий мозг растет и изменяется от интенсивных занятий. Кроме того, ее работа ясно показывает, что дополнительные нейроны и другие ткани заднего гиппокампа ответственны за развитие навигационных навыков получивших лицензию таксистов. Задний гиппокамп среднего лондонского таксиста – нейронный эквивалент накачанных бицепсов и широких плеч профессиональных гимнастов. Они годами тренируются на кольцах, козле и брусьях, развивая именно те мышцы, что отвечают за выполнение упражнений на этих снарядах. Благодаря специфически развитой мускулатуре гимнасты могут выполнять упражнения, которые были им недоступны в начале их спортивной карьеры. Точно так же и таксисты «накачивают» свой гиппокамп. Разница лишь в том, что они имеют дело не с мышечными волокнами, а с тканями мозга.
Даже в конце XX века большинство ученых сочли бы результаты исследований Макгвайр невозможными. Господствовало мнение, что у взрослого человека мозг уже принципиально не меняется. Конечно, возможны мелкие изменения при появлении новых навыков, но и они объясняются лишь усилением или ослаблением определенных нейронных связей. Но в целом считалось, что структура мозга и его нейронных сетей на протяжении всей жизни остается неизменной. Эта идея никак не противоречила убеждению, что индивидуальные навыки «выдаются» каждому при рождении и определяются набором генов, а обучение лишь позволяет максимально использовать потенциал мозга. Многие сравнивали человеческий мозг с компьютером, а процесс обучения – с загрузкой на него файлов или установкой новых приложений: это позволяет делать что-то новое, но в целом потолок определяется количество байтов RAM-памяти или мощностью процессора.
Адаптивность человеческого тела заметить было всегда проще. Взять хотя бы отжимания. Если вы – мужчина от 20 до 30 лет в относительно неплохой форме, то скорее всего можете отжаться где-то 40–50 раз. Отжимаетесь 100 раз? Наверняка можете удивить этим друзей и выиграть несколько пари. Каков же мировой рекорд по отжиманиям? Наверное, скажете вы, 500 или, быть может, 1000 отжиманий? А вот и нет. В 1980 году Минору Йошида из Японии поставил мировой рекорд, отжавшись 10 507 раз без перерыва. После этого Книга рекордов Гиннесса перестала принимать заявки от людей, которые отжимались без перерыва. Вместо этого теперь учитывалось количество отжиманий в течение суток с обязательными перерывами. В 1993 году в этой категории был поставлен не побитый до сих пор рекорд: Чарльз Сервицио из США отжался 46 001 раз за 21 час и 21 минуту.
Другой хороший пример – подтягивания. Даже мужчины в хорошей спортивной форме редко могут подтянуться более 15 раз. Настоящие спортсмены – 40–50 раз. А Ян Кареш из Чехии в 2014 году за двенадцать часов подтянулся 4654 раза.
Короче говоря, человеческое тело может адаптироваться почти к чему угодно. Изменяются не только мышцы, но и легкие, сердце, система кровообращения и т. д. Возможно, и тут существует реальный потолок, но пока что никаких доказательств этому нет.
Благодаря исследованиям Макгвайр и других ученых теперь мы знаем, что и мозг способен подстраиваться под изменившиеся обстоятельства не хуже нашего тела.
Наиболее ранние исследования адаптивности мозга – или пластичности, как говорят нейробиологи, – проводились при изучении работы мозга слепых и глухих людей. После потери зрения или слуха мозг «перепрограммирует» себя так, чтобы его части, отвечавшие за эти чувства, не простаивали без дела. В основном слепые не видят из-за проблем непосредственно с глазами или зрительным нервом. Зрительная зона коры головного мозга при этом у них в полном порядке. Если бы наш мозг и впрямь был устроен как компьютер, зрительная зона слепого человека так и осталась бы незадействованной. Сегодня мы уже знаем, что мозг умеет перераспределять свои ресурсы так, чтобы задействовать неактивные зоны. Как правило, в случае слепых и глухих людей мозг «привязывает» неиспользуемые зоны к областям мозга, которые отвечают за другие органы чувств.