Магия математики: Как найти x и зачем это нужно - Страница 5

Изменить размер шрифта:

С двух- или трехзначными (как, впрочем, и с бóльшими) числами самая правильная стратегия – дополняющие числа (потом вы еще скажете мне за это спасибо). Дополняющее число – это разность между тем числом, которым вы оперируете, и ближайшим к нему бóльшим круглым. В принципе, то же самое, что и в нашем примере с 9: в этом случае дополняющим числом будет 1, а ближайшим круглым – 10 (как и для всех однозначных чисел). Для двузначных чисел это будет 100. Посмотрите на пары чисел, которые мы складываем, чтобы получить 100. Что вы видите?

Магия математики: Как найти x и зачем это нужно - i_017.png

Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.

Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот зубодробительный пример вычитания превращается в простейший пример сложения! Вместо того чтобы вычитать 567, вычтем 600. Это гораздо проще, особенно если считать слева направо: 1234 – 600 = 634. Но ведь это не тот ответ, который нам нужен? Насколько не тот? Ровно на разность между 567 и 600 – такую же, как и между 67 и 100, то есть на 33. Значит,

1234 – 567 = 634 + 33 = 667

Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:

Магия математики: Как найти x и зачем это нужно - i_018.png

В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.

Отступление

Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26² = 676, а 18² = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?

Умножение в уме

Вы не поверите, но для того, чтобы легко умножать в уме, хотя бы примерно, достаточно выучить обычную таблицу умножения. А потом – набить руку (не беспокойтесь, учить больше ничего не придется) в решении примеров, в которых однозначное число умножается на двузначное. И снова: главный трюк – считать слева направо. Умножая, например, 8 на 24, умножьте сначала 8 × 20, а потом – 8 × 4:

8 × 24 = 8 × 20 + 8 × 4 = 160 + 32 = 192

Хорошо потренировавшись, переходите к перемножению одно- и трехзначных чисел. Это немного сложнее – просто потому, что чуть больше нужно держать в уме. Трюк в том, чтобы последовательно складывать промежуточные результаты и тем самым своевременно освобождать свою «оперативную» память. Например, при умножении 456 × 7 вашим предпоследним действием должно быть сложение 2800 + 350, а последним – прибавление 42.

Магия математики: Как найти x и зачем это нужно - i_019.png

Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя бы потому, что способов, которыми можно достичь нужного результата, много и все они разные. Это значит, что вы можете проверить себя – и одновременно насладиться стройностью арифметических чудес. Рассмотрим всего один пример: 32 × 38.

Самый популярный (и наиболее близкий к подсчету в столбик) метод – это метод сложения, безотказный в решении почти любой задачи. Он предлагает нам разбить одно из чисел (обычно то, которое состоит из меньших цифр) надвое, умножить каждую часть на второе число, а потом сложить результаты. Например,

32 × 38 = (30 + 2) × 38 = 30 × 38 + 2 × 38 =…

Как будем умножать 30 × 38? Сначала умножим 3 × 38, а в конце прибавим 0. То есть 3 × 38 = 90 + 24 = 114, поэтому 30 × 38 = 1140. А потом 2 × 38 = 60 + 16 = 76. В итоге

32 × 38 = 30 × 38 + 2 × 38 = 1140 + 76 = 1216

Другой способ решить наш пример (особенно если одно из наших чисел заканчивается на 7, 8 или 9) – использовать метод вычитания. Начать следует с того, что 38 = 40 – 2, а значит,

38 × 32 = 40 × 32 – 2 × 32 = 1280 – 64 = 1216

Сложность обоих методов – как сложения, так и вычитания – заключается в том, что они заставляют вас постоянно держать в голове большие числа (вроде 1140 или 1280), одновременно делая другие вычисления. Не самая простая задача. Мне больше по душе метод разложения на сомножители, особенно полезный всякий раз, когда одно из имеющихся у нас чисел является произведением двух однозначных чисел. В нашем примере это 32 – произведение 8 и 4. Следовательно,

38 × 32 = 38 × 8 × 4 = 304 × 4 = 1216

Если же мы разложим 32 на 4 и 8, получим 38 × 4 × 8 = 152 × 8 = 1216, но я лично предпочитаю умножать двузначное число сначала на больший сомножитель, а промежуточный результат (обычно трехзначный) – на меньший.

Отступление

Метод разложения отлично работает при умножении на 11 – хотя бы потому, что здесь есть один любопытный и при этом простой трюк: нужно просто сложить между собой цифры первого числа и поместить сумму в его середину. Для примера умножим 53 на 11: 5 + 3 = 8, значит, ответ будет 583. А вот 27 × 11 ÷ 2 + 7 = 9, в итоге получаем 297. А если сумма больше 9, берем последнюю цифру результата сложения, а первую цифру исходного числа увеличиваем на единицу. Например, 48 × 11 ÷ 4 + 8 = 12, значит, ответ будет 528. По аналогии: 74 × 11 = 814. Этот трюк работает и при умножении на числа, кратные 11, например,

74 × 33 = 74 × 11 × 3 = 814 × 3 = 2442

Другой интересный метод – метод сближения. Его можно использовать, когда двузначные числа, которые вы перемножаете, начинаются с одной и той же цифры. Неискушенному наблюдателю он может показаться настоящим фокусом. Ведь разве можно просто взять и поверить, что

38 × 32 = (30 × 40) + (8 × 2) = 1200 + 16 = 1216

Вычисления становятся элементарными, если последние цифры двух чисел дают в сумме 10 (как в нашем примере: оба числа начинаются с 3, а сумма их последних цифр – 8 и 2 – равна 10). Вот еще один пример:

83 × 87 = (80 × 90) + (3 × 7) = 7200 + 21 = 7221

Но даже если вторые цифры не дадут в сумме 10, метод от этого не станет менее эффективным и эффектным, да и вычисления усложнятся не так уж и сильно. Чтобы умножить, например, 41 на 44, сначала надо уменьшить меньшее из них на единицу (чтобы работать с круглым числом 40) и, соответственно, увеличить на ту же единицу большее число:

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com