Краткая история биологии. От алхимии до генетики - Страница 27
Эффект от влияния химиотерапевтических агентов сводится к нарушению естественного метаболизма клетки. Поиск таких агентов рационализируется, если изучены все детали метаболизма.
Английский биохимик Артур Хэрден (1865 — 1940) был первооткрывателем процессов метаболизма. Он изучал энзимы дрожжевой вытяжки и в 1905 г. отметил, что эта иытяжка разлагала сахар и быстро вырабатывала двуокись углерода — однако со временем скорость процесса замедлялась. Ученый предположил, что содержание энзимов падает, однако опыт показал, что это не так. При добавлении простого неорганического вещества — фосфата натрия — энзимы начинали свою работу вновь.
По мере работы энзимов содержание фосфата натрия падало. Хэрден выяснял, не образуется ли при этом какой-либо органический фосфат. Он обнаружил фосфат в виде молекулы сахара, к которой присоединились две фосфатгруппы. Это положило начало химии промежуточных продуктов метаболизма,
Немецкий биохимик Отто Фритц Мейергоф (1884 — 1951) показал, что при мускульном сокращении исчезает гликоген (крахмал), а в соответствующих количествах появляется молочная кислота. Энергия реакции появлялалась без участия кислорода. Когда же мышца отдыхала, некоторое количество молочной кислоты окислялось. Энергия, развивающаяся таким образом, позволяла большой части молочной кислоты реконвертироваться в гликоген.
Английский физиолог Арчибалд Вивиен Хилл (1886—1977) пришел к тому же заключению путем измерения количества тела, выделяемого сокращающейся мышцей.
Детали превращения гликогена в молочную кислоту были разработаны в 1930-х годах американскими биохимиками Карлом Фердинандом Кори (1896 - 1984) и Герти Терезой Kopи (1896— 1957). Ученые выделили из мышечной ткани неизвестный компонент и показали, что это — первый продукт распада гликогена в мышцах. Они профильтровали каждый компонент на каждом этапе. Один из промежуточных продуктов был фосфат сахара, обнаруженный Хэрденом гораздо ранее.
Этот факт оказался знаменателен: в XX в. было выяснено, что фосфатгруппа играет важную роль в биохимии. Американский биохимик Фриц Альберт Липман (1899 — 1986) показал, что фосфатгруппа встречается в молекулах в одном-двух типах размещения: низкоэнергетическом и высокоэнергетическом. Когда молекулы крахмала либо жира разлагаются, высвобождаемая энергия используется для конвертации низкоэнергетических фосфатов в высокоэнергетические. Таким образом, энергия запасается в организме в удобной химической форме. Разложение одного высокоэнергетического фосфата освобождает столько энергии, чтобы привнести различные энергопотребляющие химические изменения в организме.
Этапы в разложении гликогена, требующие присутствия кислорода, стало возможно изучить при помощи новой методики, разработанной немецким биохимиком Отто Генрихом Варбургом (1883-1970). В 1923 г. он изобрел метод изготовления тонких срезов тканей (живых, абсорбирующих кислород) и сумел измерить расход ими кислорода.
В малой колбе с тонкостенной U-образной трубкой он наливал на дно трубки окрашенный раствор. Углекислый газ, выработанный тканью, абсорбировался спиртовым раствором в колбе. Кислород не замещался углекислым газом, и поэтому в колбе образовывался частичный вакуум и окрашенная жидкость в трубке поднималась в колбу. По изменению уровня окрашенной жидкости, тщательно измеренному, можно было подсчитать расход кислорода.
Влияние различных компонентов по расходу ими кислорода оценивалось как участие в промежуточных продуктах метаболизма. Английский биохимик Ханс Адольф Кребс (1900—1981) известен своими работами в данной области. К 1940 г. Кребс разработал основные этапы разложения молочной кислоты до двуокиси углерода и воды, и последовательность реакций часто называют циклом Кребса. Кребс также установил этапы образования мочи из аминокислот.
Наравне с этими знаниями по метаболизму клетки накапливались знания о тонкой структуре клетки. Были разработаны новые методики исследований. В 1930-х годах был сконструирован первый электронный микроскоп. Он давал несравнимо большую разрешающую способность, чем самые мощные обычные микроскопы.
Американский ученый Владимир Зворыкин (1888 — 1982) приспособил электронный микроскоп к исследованиям цитологии. Можно было рассматривать частицы размером с большую молекулу; в протоплазме клетки был найден комплекс малых, но высокоорганизованных структур, названных органеллами.
В 1940-х годах были разработаны методики выделения органелл разного размера. Среди крупных — митохондрии. Типичная клетка печени содержит около тысячи митохондрий, каждая около пятитысячной миллиметра длиной. Их детально исследовал американский биохимик Дэвид Эзра Грин.
Он выяснил, что именно в них идут реакции цикла Кребса.
Итак, крошечные митохондрии и есть «электрические станции клетки».
Методы исследования метаболизма клетки облегчаются использованием атомов-изотопов. В первую треть XX в. физики выяснили, что большинство элементов состоит из нескольких изотопов.
Американский биохимик Рудольф Щенхаймер (1898—1941) первым осуществил крупномасштабные исследования в биохимии. К 1935 г. был выделен редкий изотоп водорода — дейтерий. Он вдвое тяжелее обычного водорода и используется для синтеза молекул жира. Будучи внедрен в ткани лабораторных животных, он дает освещение метаболизму клетки.
К тому времени считалось, что запасы жира в организме в целом неизменны, но было известно, что они мобилизуются в периоды голода. Однако Щенхаймер обнаружил, что к концу четвертого дня- ткани подопытных крыс, которым скармливали насыщенный дейтерием корм, содержали лишь его половину. Другими словами, потребленный жир запасался, а запасенный расходовался. Итак, составляющие тела претерпевают постоянное изменение.
Щенхаймер перешел к опытам с азотом-15. Им метили аминокислоты. Молекулы аминокислот в организме крыс, как выяснилось, постоянно проходили взаимообмен.
Радиоактивные изотопы позволили американскому биохимику Мелвину Калвину детально разработать последовательность реакций фотосинтеза, при котором зеленые растения превращают солнечный свет в химическую энергию и снабжают животный мир пищей и кислородом.
Глава 13
Молекулярная биология. протеин
XX в. открывал все новые и новые детали метаболизма клетки. Каждая метаболическая реакция, как выяснилось, катализируется каким-то определенным энзимом. Для того чтобы понять природу метаболизма, нужно исследовать данный энзим. Хэрден в своих исследованиях клеточного метаболизма также приоткрыл завесу тайны над энзимами.
Он и еще несколько ученых пришли к заключению, что энзим — очень большая молекула, включающая еще и маленькую молекулу, способную открепиться от большой и пройти через молекулярную мембрану. Эта малая, свободно связанная с большой, молекула была названа коэнзим.
Структуру коэнзима исследовал в 1920-х годах немецкий химик Ганс Карл фон Элер-Челпин. По мере выяснения молекулярной структуры витаминов стало совершенно очевидным, что многие коэнзимы содержат витаминоподобные структуры.
Было установлено, что витамины представляют собой те части коэнзимов, которые организм сам не вырабатывает и поэтому должен потреблять с пищей. Без витаминов коэнзимы не формируются; без коэнзимов, в свою очередь, энзимы бывают неэффективны, и метаболизм расстраивается. В результате возникают авитаминоз и болезнь дефицита витаминов.
Поскольку энзимы представляют собой катализаторы, необходимые организму лишь в небольших количествах, коэнзимы (и витамины) также нужны в небольших количествах. Вот почему следовые количества витаминов бывают насущно необходимы. Легко было установить, что организму необходимы следовые количества таких элементов, как медь, кобальт, молибден, цинк.