Космическая технология и производство - Страница 12
Благодаря отсутствию силы Архимеда и преобладающей роли капиллярных сил в условиях, близких к невесомости, бесконтейнерным методом можно производить изделия из стекла, состоящие из разнородных исходных материалов и обладающие высоким совершенством поверхности. В качестве примера приведем твердые фильтры, которые представляют собой взвесь малых прозрачных частиц внутри прозрачного материала, подобранные таким образом, чтобы показатели преломления этих частиц и материала совпадали лишь для одной длины волны. В результате световое излучение лишь этой длины волны будет проходить сквозь фильтр без потерь, а для всех других длин волн будет происходить сильное рассеивание и поглощение света за счет многократных отражений между частицами. В невесомости можно добиться высокой однородности распределения частиц в основном материале.
Бесконтейнерное производство стекла в космических условиях может привести к уменьшению относительного числа некоторых наиболее типичных дефектов. К таким дефектам относятся:
1) кристаллы, т. е. включения, выделяющиеся из самого стекла в процессе затвердевания;
2) инородные включения (бесконтейнерное стеклование в состоянии резко снизить их концентрацию);
3) свили, т. е. прослойки одного стекла в другом, обладающем иным химическим составом (источником свилей также в значительной степени служит поступление загрязнений со стенок тигля);
4) пузыри, т. е. газовые включения, для их устранения в условиях, близких к невесомости, жидкую стеклообразную массу, возможно, придется подвергать специальной обработке (вращение, вибрация и т. п.).
Существенного улучшения материала можно ожидать также и в случае производства в космосе волоконных световодов. Такой световод обычно представляет собой стержень из стекла с высоким коэффициентом преломления, окруженный стеклянной оболочкой с более низким коэффициентом преломления. Большое различие между этими коэффициентами обеспечивает малое поглощение и высокий коэффициент пропускания по светопроводу.
Качество светопровода зависит от точности соотношений между диаметрами стержня и оболочки, а также между их показателями преломления. Если на границе раздела стержня и оболочки имеются неоднородности размером не меньше длины волны света (разница диаметров, дефекты структуры стекла, неоднородность показателей преломления и т. д.), то на них световая энергия будет частично рассеиваться и поглощаться. На величину поглощения сильно влияет также загрязнение стекла (тяжелыми ионами, парами воды и т. п.) В космических условиях возможно усовершенствование технологии производства волоконных световодов за счет удаления нежелательных примесей при бесконтейнерной плавке, выравнивания диаметров за счет преобладающей роли сил поверхностного натяжения в расплаве.
В качестве примера перспективных керамических материалов, производство которых в космосе может оказаться выгодным, приведем эвтектики, затвердевающие в одном направлении. Этим методом в керамическую основу могут быть внедрены металлические нити.
Высказываются также предложения о производстве в космосе еще одного типа керамических материалов — композиционных микросхем. Эти керамики состоят из стеклообразной массы, включающей взвешенные частицы, которые определяют электронные характеристики материалов. В условиях невесомости можно рассчитывать на повышение их однородности.
Ввиду сложности технологии получения стекла экспериментальные исследования на космических аппаратах в этом направлении сильно отстали от работ в других областях космического производства. В марте и декабре 1976 г. при запуске в СССР высотных ракет были впервые осуществлены эксперименты по плавке стекла. С использованием экзотермических источников энергии исследовались процессы плавления и стеклообразования в условиях, близких к невесомости, на примере стекла с наполнителем (стекло с алюминием), а также особо прочного фосфатного стекла. Доставленный из космоса образец фосфатного стекла частично состоит из зон с газовыми включениями, а частично — из зоны однородного материала. У полученного сплава алюминий—стекло отмечены полупроводниковые свойства.
Медико-биологические препараты
Одна из важных задач, связанных с производством медико-биологических препаратов (вакцин, ферментов, гормонов и т. п.), состоит в их очистке. Известно, например, что повышение чистоты используемых вакцин уменьшает при их употреблении вероятность проявления вредных побочных эффектов, а это, в свою очередь, позволяет повысить дозировку и поднять эффективность лечебного препарата.
Один из наиболее распространенных способов очистки и разделения клеточного биологического материала основан на использовании электрофореза. Это явление наблюдается в дисперсных системах, т. е. таких системах, которые состоят из двух или большего числа фаз с сильно развитой поверхностью раздела между ними, причем одна из фаз (дисперсная фаза) распределена в виде мелких частиц — капелек, пузырьков и т. п. — в другой фазе (дисперсионная среда). К числу дисперсных систем относятся биологические вещества. Если к такой среде приложить внешнее электрическое поле, то под его влиянием дисперсные частицы, взвешенные в жидкости, начинают двигаться. В этом и состоит явление электрофореза.
Взвешенные в жидкой среде дисперсные частицы приходят под действием электрического поля в движение, потому что они обладают электрическим зарядом. Поскольку разные органические молекулы обладают разным электрическим зарядом, скорость, которую они приобретают в электрическом поле, различна. На этом различии скоростей и основан метод электрофоретического выделения из дисперсной среды необходимых фракций и очистки биологических материалов. Схема экспериментальной установки, построенной на основании этих принципов, показана на рис. 13.
Рис. 13. Электрофорез в свободном потоке жидкости (1 — подача раствора; 2 — отбор фракций). Разделение фракций осуществляется в направлении, перпендикулярном течению раствора между электродами
В земных условиях использование метода электрофореза для разделения компонентов жидкости сталкивается с несколькими трудностями. Во-первых, наблюдается частичное перекрытие фракций, вызванное свободной конвекцией, а также термической конвекцией, обусловленной возникновением дополнительных перепадов температуры и плотности раствора за счет его нагрева при прохождении электрического тока. По этой причине величину тока, который можно пропустить через раствор, сильно ограничивают, чтобы не допустить нежелательного перегрева жидкости. А это означает, что производительность установки по разделению биологических материалов сравнительно невысока. Кроме того, из-за различия плотностей дисперсной фазы и дисперсионной среды под действием силы Архимеда возможно их разделение.
В космических условиях эти трудности можно преодолеть. Прежде всего это касается возможности ограничить роль конвекции и, следовательно, улучшить степень очистки и повысить производительность установок. Другое возможное преимущество электрофоретического метода в условиях невесомости связано с отсутствием влияния плотности на разделение фаз. В земных условиях ют плотности зависит вязкость, величину которой можно менять, добавляя в раствор большое количество малых молекул или малое количество больших молекул. В невесомости этот способ управления вязкостью раствора становится особенно удобным из-за отсутствия силы Архимеда. В результате открывается возможность управлять вязкостью среды как независимым параметрам, который не связан с плотностью. Реализовать эту возможность на Земле, разумеется, нельзя.
С целью непосредственной проверки этих выводов в космических условиях западногерманскими и американскими учеными был поставлен ряд экспериментов, выполненных на станции «Скайлэб» и при совместном полете кораблей «Союз» и «Аполлон». В эксперименте на «Скайлэб» был испытан прибор, в котором невозмущенный поток жидкости протекал между двумя пластинами, к которым было приложено электрическое поле. Частицы вводились в раствор на одном конце прибора и удалялись через отверстия, расположенные на другом его конце. В земных условиях из-за перемешивающих конвекционных потоков расстояние между пластинами не удавалось сделать больше 1–2 мм. В космических условиях его удалось увеличить до 5 — 10 мм. Этот результат подтвердил возможность повысить производительность прибора и улучшить его разрешающую способность.