Как обезвредить воздух? - Страница 3

Изменить размер шрифта:

3.1.1. НАНЕСЕНИЕ ТОКОПРОВОДЯЩЕГО СЛОЯ НА ВНУТРЕННИЮ ПОВЕРХНОСТЬ СТЕКЛЯННЫХ ТРУБОК-ЭЛЕКТРОДОВ

На рис.1 изображен высоковольтный электрод, который представляет собой стеклянную трубку, покрытую внутри токопроводящим слоем.

Величина сопротивления токопроводящего слоя должна находиться от 30 Ом до 30 КОм.

Токопроводящий слой на обрезанную под размер стеклянную трубку сначала наносят следующим образом. Стеклянную трубку сначала обезжиривают путем ее опускания в мерный цилиндр вместимостью 1 л с хромовой смесью на 15-20 мин. при температуре 30-40. С, после чего трубку промывают холодной водой на воздухе(1). Для выдерживания длины токопроводящего слоя в трубке концы последней покрывают предохранительным слоем, поочередно опуская их на необходимую длину в стакан с химически стойким лаком с последующим высушиванием его на воздухе(2). Токопроводящий состав готовят перемешиванием до получения однородной массы следующих компонентов, %: Жидкое стекло – 55; активированный уголь или графит, пропущенный через сито 0,25 – 40 мм; порошок меди – 5.

Приготовленный таким способом токопроводящий состав в виде суспензии в жидком стекле во избежание его высыхания как можно быстрее наносят поролоновым ершиком на внутреннюю поверхность стеклянной трубки, размазывая равномерно состав по периметру. В процессе высыхания жидкого стекла в трубке, ее постоянно поворачивают вокруг собственной оси для получения равномерного нанесения в ней токопроводящего слоя. После высыхания жидкого стекла визуально оценивают качество нанесенного покрытия, которое должно плотно прилегать (без раковин и пузырей) к внутренней поверхности трубки и составлять не менее 95% от общей площади покрываемой поверхности. Если такого нет, нанесенный токопроводящий слой удаляют из трубки вымачиванием его в 5-10 % растворе едкого натра при температуре 30-40 °С до возможности его удаления ершиком(3). Далее трубку промывают холодной водой от остатков токопроводящего покрытия, снова обезжиривают хромовой смесью и повторяют нанесение токопроводящего слоя вновь по приведенной выше технологии. Если токопроводящий слой нанесен удовлетворительно, то измеряют его величину сопротивления по длине тестером. При сопротивлении менее 30 Ом наносят описанным выше способом второй слой покрытия и т.д. пока величина сопротивления нанесенного токопроводящего слоя не окажется в указанных выше пределах. После окончания операций по нанесению токопроводящего слоя на стеклянную трубку, вручную снимают предохранительный слой лака с ее обоих концов(4).

Как обезвредить воздух? - _3.jpg

Рис. 3 Схема лабораторной установки

1. Все операции, связанные с приготовлением хромовой смеси и работы с ней, должны проводиться в защитных очках или маске, резиновых перчатках и резиновом фартуке. При попадании хромовой смеси на кожу немедленно промыть это место большим количеством проточной воды. Не допускать взаимодействия концентрированной хромовой смеси с канализационными трубопроводами во избежании их течи.

2. Длина предохранительного слоя на концах стеклянной трубки должна находиться в пределах от 50 до 60 мм.

3. Все операции по приготовлению водного раствора едкого натра и проведение последующих с ним работ проводить в защитных очках и резиновых перчатках. При попадании щелочи на кожу промыть это место большим количеством проточной воды.

4. Допускаются трещины и сколы на концах трубки в местах непокрытых токопроводящим слоем.

В ходе эксплуатации опытно– экспериментального образца реактора не реже 1 раза за 8 часов работы следует проводить визуальный осмотр высоковольтных электродов. Если произошло отслоение токопроводящего слоя от стеклянной трубки или высоковольтный электрод разбился, необходимо заменить его на новый.

3.1.2. КРАТКОЕ ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ СХЕМЫ

Принципиальная схема кассеты реакторов-озонаторов приведена на рис. 4

Как обезвредить воздух? - _4.jpg

Рис.4 Схема стенда для снятия вольтамперных характеристик реактора трубки

Кассета состоит из шести одинаковых модулей реакторов (А1-А6) и блоков индикации (А7-А12).

Питание схемы осуществляется от блока питания, состоящего из автотрансформатора Т3, трансформатора Т2 и диодного мостика Д7. Питание схемы индикации осуществляется постоянным напряжением 27 В от выпрямителя, питание реактора осуществляется от сети переменного тока напряжением 220 В.

В схеме электропитания имеется система управления и сигнализации, которая выносится на пульт управления. Пульт управления включает в себя амперметр, вольтметр и сигнальные лампы. Для коммутации силовых цепей предусмотрен магнитный пускатель. Пульт снабжен вентилятором воздуха.

3.1.3. ПРИНЦИП РАБОТЫ МОДУЛЯ РЕАКТОРА

Принцип действия модуля озонатора основан на использовании ионизационных процессов в парогазовоздушных смесях при давлениях близких к атмосферному. Эти процессы возбуждаются в электродных ячейках при подаче высокого напряжения и имитируют образование атомарного кислорода и озона, которые окисляют пары углеводородов (в данном случае от стирола) в конечном итоге, до воды и углекислого газа.

Механизм этого процесса неизвестен и требует серьезного научного исследования.

3.1.4. ТЕХНИКА БЕЗОПАСНОСТИ

Опытно-экспериментальный модуль озонатора относится к установкам с высоким напряжением. Она выполнена в металлическом корпусе, который заземляется или зануляется, что обеспечивает безопасность в обслуживании и эксплуатации.

Перед включением модуля озонатора вентиляционных выбросов необходимо проверить надежность заземления или зануления его корпуса.

При выполнении ремонтных и профилактических работ открывать корпус модуля озонатора разрешается только через 15 минут после отключения его то сети.

Ремонтные работы и профилактическое обслуживание установки должно производиться электриками, имеющими доступ к работе с высоким напряжением (3 и 4 группы).

На полу у пульта управления модуля озонатора вентиляционных выбросов необходимо предусмотреть деревянную решетку (настил) и диэлектрический коврик.

3.1.5. УСЛОВИЯ БЕЗОПАСНОЙ РАБОТЫ

При работе электроустановки с высоким напряжением в среде, содержащей воздух и горючие газы, возникает вопрос о взрыво – и пожаробезопасности.

Озонатор работает в пределах градиента потенциала 10-15 кВ/см, т.е. в области несамостоятельного темного разряда, при котором не достигается пробой газового промежутка 25 кВ/см (Еремин Е. Н. «Газовая электрохимия»).[15] Стироло – воздушная смесь имеет нижний предел воспламенения 50000-70000 (Розловский А.И. «Научные основы техники безопасности при работе с горючими газами и парами»). Реальная концентрация стирола в нейтрализуемых выбросах до 30 мг/м3, т.е. в сотни раз ниже.

Для дополнительной страховки и предупреждения распространения горения в аварийных экстремальных ситуациях с двух сторон озонатора на расстоянии 0,5 м должны быть установлены огнепреградители с диаметром каналов 0,7– 1,2 мм, в сочетании с предохранительными клапанами, которые устанавливаются с обеих сторон от огнепреградителя. Диаметр отверстия предохранительного клапана должен быть равен диаметру трубы, на которой он устанавливается.

3.1.6. ПОРЯДОК ВКЛЮЧЕНИЯ

Подать напряжение на пульт управления средств контроля и сигнализации. Для этого включить рубильник. При этом загорается сигнальная лампа («Сеть включена»). Установить ЛАТР в нулевое положение, ручку ЛАТРа повернуть влево до конца. Включить высокое напряжение путем нажатия кнопки. На табло загорается сигнальная лампа («Высокое напряжение включено»). Посредством ЛАТРа установить по вольтметру не более 40 В. Рекомендуется оставить в рабочем состоянии модуль озонатора в течение всего времени подачи вентиляционных выбросов. Целесообразно выключить модуль озонатора после окончания подачи вентиляционных выбросов.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com