Искусство схемотехники. Том 2 (Изд.4-е) - Страница 19
Как и в боксе, где быть лучшим в драке еще не означает иметь шанс на участие в чемпионате мира, так и здесь имеются несколько юных претендентов на звание лучшего малошумящего транзистора. Например, в комплементарных ПТ с р-n-переходом 2SJ72 и 2SK147 фирмы Toshiba используется ячеистая геометрия затвора, что позволяет получить феноменально низкое значение еш 0,7 нВ/Гц1/2 при Iс = 10 мА (это эквивалентно тепловому шуму 30-омного резистора!). Но ведь это ПТ с их малым входным током (и поэтому малым iш), а отсюда и то, что шумовое сопротивление примерно равно 10 кОм. При использовании их в усилителе при сопротивлении источника, равном их шумовому сопротивлению (т. е. при Rи = 10 кОм), эти транзисторы непобедимы — температура шума составляет всего 2 К!
Перед тем как бежать покупать мешок этих замечательных ПТ, выслушайте несколько критических замечаний, которые заставят усомниться в безграничности их возможностей, — эти ПТ имеют высокую входную емкость и большую емкость обратной связи (85 и 15 пФ соответственно), что делает их ограниченно годными на высоких частотах. Их родственник 2SK117 в данном отношении лучше, но у него выше еш. Те же критические аргументы справедливы для биполярных комплементарных пар 2SD786 и 2SB737 фирмы Тоуо — Rohm, у которых при еш по крайней мере не выше 0,55 нВ/Гц1/2 при умеренных значениях полного сопротивления источника и частоты можно получить даже лучшие рабочие параметры.
Малое полное сопротивление источника. Биполярно-транзисторные усилители обеспечивают очень хорошие шумовые параметры в диапазоне полного сопротивления источника от 200 Ом до 1 МОм; соответствующий оптимальный ток коллектора лежит обычно в диапазоне от нескольких миллиампер до 1 мкА, т. е. токи коллектора, используемые во входном каскаде малошумящего усилителя, несколько меньше, вообще говоря, чем в не оптимизированных по уровню шума усилительных каскадах. При очень малых полных сопротивлениях источника (например, 50 Ом) всегда будет преобладать шум напряжения транзистора и коэффициент шума будет неудовлетворительным. В этом случае лучше всего использовать трансформатор для увеличения уровня (и сопротивления источника) сигнала, рассматривая при этом сигнал на вторичной обмотке как сигнал источника. Высококачественные преобразователи сигнала выпускаются фирмами James и Princeton Applied Research. Например, выпускаемая последней фирмой модель ПТ-предусилителя 116 имеет такие шумы напряжения и тока, что наименьший коэффициент шума наблюдается при полном сопротивлении источника сигнала около 1 МОм. Сигналы частоты 1 кГц с полным сопротивлением источника порядка 100 Ом плохо согласуются с таким усилителем, так как шум напряжения усилителя будет намного больше теплового шума источника сигнала; в результате, если такой сигнал подать прямо на усилитель, коэффициент шума будет равен 11 дБ. Если же использовать встроенный (необязательный) повышающий трансформатор, то уровень сигнала повышается вместе с полным сопротивлением источника, превышая шум напряжения усилителя, и коэффициент шума становится равным 1,0 дБ.
На радиочастотах, начиная к примеру, приблизительно от 100 кГц, хороший трансформатор сделать довольно легко как для «настраиваемых» (узкополосных), так и для широкополосных сигналов. При таких частотах легко построить «трансформаторную линию передачи» с широкой полосой частот и очень хорошими параметрами. Некоторые пути для этого мы рассмотрим в гл. 13, т. 2. А вот на низких частотах (звуковых и ниже) применение трансформаторов проблематично.
Три замечания: (а) Напряжение растет пропорционально отношению числа витков в обмотках, а полное сопротивление - пропорционально квадрату этого отношения. Поэтому выходное полное сопротивление трансформатора, повышающего напряжение в два раза, превосходит входное полное сопротивление в четыре раза (за счет запасания энергии), (б) Трансформаторы несовершенны. При низких частотах сигнала может доставить хлопоты магнитное насыщение, при высоких-емкость и индуктивность обмоток, и всегда наблюдаются потери из-за магнитных свойств сердечника и сопротивления обмоток. Последнее к тому же является источником теплового шума. Тем не менее при работе с источником сигнала, имеющим очень малое полное сопротивление, выбора у вас нет, а применение трансформатора, как показывает предыдущий пример, дает огромный выигрыш. Чтобы улучшить режим работы с малым уровнем сигнала и малым сопротивлением его источника, можно применять и экзотическую аппаратуру вроде охлаждаемых трансформаторов, сверхпроводящих трансформаторов, а также СКИП (Сверхпроводящие Квантовые Интерференционные Приборы). С помощью СКИПов можно измерять напряжение порядка 10-15 В! (в) И снова предупреждаем: не пытайтесь улучшить режим работы, добавляя последовательный резистор к источнику сигнала с малым полным сопротивлением. Вы просто окажетесь очередной жертвой распространенного заблуждения насчет коэффициента шума.
Большое полное сопротивление источника. При больших значениях полного сопротивления источника, превышающих, скажем, 100 кОм, преобладает шум тока транзистора и лучшим устройством для усиления с малыми шумами будет ПТ. Хотя у него шум напряжения обычно больше, чем у биполярного транзистора, но ток затвора и его шум исчезающе малы, поэтому ПТ являются идеальными устройствами для усилителей, работающих с источником сигнала с большим полным сопротивлением и дающих малый шум. В связи с этим иногда полезно трактовать тепловой шум как шум тока iш = еш/Rи, что позволяет сравнивать вклад шума источника и шум тока усилителя (рис. 7.52).
Рис. 7.52. Зависимость плотности напряжения теплового шума от сопротивления при температуре 25 °C. Показана также плотность тока шума в режиме короткого замыкания.
7.15. Шум ПТ
Для ПТ можно использовать ту же модель шума усилителя, что и для биполярного транзистора, т. е. последовательно со входом соединить источник шума напряжения и параллельно присоединить источник шума тока. При этом анализировать шумовые параметры можно так же, как это делалось для биполярных транзисторов (см., например, рис. 7.51 в разделе, посвященном сравнению ПТ и биполярных транзисторов).
Шум напряжения ПТ с p-n-переходом. Для ПТ с p-n-переходом шум напряжения есть, в сущности, тепловой шум сопротивления канала, который приближенно описывается формулой
е2ш = 4kT[(2/3)(1/gm)] В2/Гц,
где величина, обратная крутизне, играет роль сопротивления в формуле теплового шума. Так как крутизна растет вместе с током стока (как √Ic), для снижения шума напряжения имеет смысл, чтобы ПТ работали с большим током стока. Однако, поскольку еш представляет собой тепловой шум, пропорциональный 1/√gm, а крутизна, в свою очередь, пропорциональна √Ic, то еш в конечном счете пропорциональна Ic-1/4. При столь слабой зависимости еш от Ic не следует сильно увеличивать ток стока, так как это ухудшит другие параметры усилителя. В частности, ПТ, работая при большом токе, нагревается, что (а) уменьшает gm, (б) увеличивает дрейф напряжения сдвига и КОСС и (в) драматическим образом увеличивает ток утечки затвора; последний эффект фактически может увеличить шум напряжения за счет некоторого вклада в еш фликкер-шума, связанного с током утечки затвора.
Существует другой путь для увеличения gm, а тем самым для уменьшения шума напряжения ПТ с p-n-переходом: включив параллельно два ПТ, мы будем иметь вдвое большую gm, при этом, конечно, удваивается и Ic. Однако теперь, если мы сохраним предыдущее значение Ic, то при этом мы все же получим увеличение gm в √2 раз. На практике мы можем просто включить в параллель несколько согласованных ПТ с p-n-переходом либо обратиться к ПТ с усложненной геометрией, таким как упомянутые выше 2SJ72 и 2SK147.