Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков - Страница 83

Изменить размер шрифта:

ВЕЧЕР ЧАЙНОГО ДНЯ

— Открываем наше вечернее заседание, — объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. — Что у нас на повестке… пардон, на чашке дня?

Бес молча указывает на рисунок, где три блистательных кавалера и одна изысканная дама играют в карты.

— Эпизод под названием «В великосветском салоне», — определяет Фило.

Все еще позевывая, Асмодей заглавие одобряет, считает, однако, необходимым добавить, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…

Мате уверенно объявляет, что разговор за карточным столом мог быть только зимой 1654 года.

— Почем вы знаете? — любопытствует Фило.

— Да потому что речь, если помните, шла о переезде Паскаля и герцога Роанне в Пор-Рояль. Отсюда следует, что интересующий нас эпизод происходил уже после обращения Паскаля, которое, как я выяснил, относится к 23 ноября 1654 года. И судя по тому, что маркиза об этом узнать не успела, разговор ее с де Мере отстоит не слишком далеко от указанной даты. Он мог состояться в конце ноября или в начале декабря.

— Мог-то мог, но вот состоялся ли? — неосторожно прорывается у Фило.

— Пф! — Асмодей возмущенно фыркает и просыпается окончательно. — Не все ли равно! Важно другое: убедительно или неубедительно? Вероятно или невероятно?

— Вероятно, вероятно! — дружно успокаивают его филоматики.

— Вот и перейдем к задачам о вероятностях, о которых так красноречиво рассказывал шевалье де Мере, — ловко поворачивает разговор черт. — Начнем, как полагается, с начала, то есть с первой задачи. Суть ее такова: двое играют в кости, бросая по два кубика сразу. Первый ставит на то, что хотя бы один раз выпадут две шестерки одновременно. Другой — на то, что две шестерки одновременно не выпадут ни разу. Спрашивается, сколько надо сделать бросков, чтобы шансы на выигрыш первого игрока превысили шансы второго.

— Ясно, что здесь возможны 36 комбинаций, — говорит Мате.

— Это почему же? — сейчас же придирается Фило.

— Да потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6 х 6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 около 0,028. А вероятность невыпадения, наоборот, очень велика: 1–1/36 = 35/36 около 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности при одном броске почти вдвое: 1 — (35/36)2 около 1–0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)х, вероятность выпадения р = 1 — (35/36)x. Вот и всё!

— Позвольте! — шебаршится Фило. — Как же все, если икс так и остался ненайденным? И каким способом вы думаете его найти?

— Очевидно, либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше 0,5.

— Значит, именно так решали эту задачу в семнадцатом веке?

— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.

— Зато известны результатыих решений, мсье, — напоминает бес. — У Паскаля и Ферма х = 25. А шевалье де Мере, как вы помните, получил два ответа 24 и 25. И теперь у нас есть полная возможность выяснить, какой же из них верен.

— Вот именно, — кивает Мате. — При x = 24: р= 1 — (35/36)24 ≈ 1–0,5094 = 0,4906. При х = 25: p = 1 — (35/36)25 ≈ 1–0,4955 = 0,5045. Так что правы-то все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, — получается именно при х = 25.

— Слава тебе Господи! — ублаготворенно вздыхает Фило. — Одна задача с плеч долой. Можно переходить ко второй…

Но в это самое время из знакомой уже нам книги Лесажа, на обложке которой Хромой бес возносит в ночное небо сеньора в испанском плаще и широкополой шляпе с перьями, вырывается чей-то отчаянный баритон в сопровождении дикого хора кошачьих воплей.

— Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!

— Дон Клеофас Леандро-Перес Самбульо, — смешливым шепотом поясняет черт. — Постоянно этот студент влипает в какие-то истории!

Услыхав голоса своих сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет!

— Асмодей! — взывает Самбульо. — Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум. Вы что, хотите, чтобы я оглох от этой кошкофонии?

«Мя-а-а-у! Мя-а-а-у!» — завывают коты на крыше.

«Мяу! Мяу!» — вторят кошки в комнате.

И тут Асмодей не выдерживает (он бес не БЕСсердечный).

— Лечу, дорогой дон Леандро-Перес! — восклицает он, торопливо дожевывая кусок пирога. — Продержитесь еще немного! Сейчас все будет улажено.

Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.

— Ну и переделка, мсье! По-моему, там собрались коты со всего Мадрида. Только на сей раз не пришлось им закончить своей КОТОвасии. Ко-ко-ко…

— Сходное положение. Совсем как во второй задаче де Мере, — острит Мате. — Игроки вносят деньги, но не успевают закончить игру. После чего им приходится выяснять, какая часть ставки причитается каждому.

— Добавьте, мсье, что в игре участвуют трое, бросающие трехгранные кости, и что каждый ставит на одну из граней.

— Разберемся по порядку, — начинает Мате, — Допустим, игроки условились бросать кости по очереди до тех пор, пока у одного из них задуманное число очков не выпадет, скажем, шесть раз. При этом первый, кому повезет, забирает все три ставки себе. Теперь рассмотрим такую картину. У одного игрока уже было пять удач. Значит, до выигрыша ему остается всего один счастливый бросок. У второго и третьего до выигрыша не хватает двух удачных выпадений, то есть у каждого из них задуманное число очков выпало по четыре раза. Но в это время игра прекращается, так как происходит что-то из ряда вон выходящее — пожар, землетрясение, всемирный потоп (ибо что же еще может заставить заядлых игроков бросить игру?). И тут возникает вопрос: как разделить поставленные деньги между партнерами?

— Вот так задачка! — Фило озабоченно почесывает затылок. — На месте де Мере я бы тоже ее не решил.

— Зато это сделали Ферма и Паскаль, причем каждый своим способом. И так как способ Ферма несколько сложнее, разберем решение Паскаля. Итак, первому игроку не хватает одного угадывания. Но ведь неизвестно еще, как бы сложилась игра в дальнейшем. Могло ведь повезти и другим партнерам! Стало быть, НАВЕРНЯКА первому причитается 1/3 и сверх того какой-то добавок, так как к моменту прекращения игры он был все-таки впереди. Остается выяснить величину этого добавка (при этом заметьте, что до выигрыша одного из игроков не хватает максимум трех бросков). Допустим, игра продолжается, и при следующем броске удача приходит ко второму игроку. Тогда его шансы уравниваются с шансами первого. Но не упущена возможность выиграть и у третьего. Поэтому, после того как первому отдадут одну треть ставок, надо оставшуюся часть, то есть 2/3 ставок, снова разделить на три равные части. Таким образом, первый игрок получает дополнительно одну треть от 2/3, то есть 2/9. То же, естественно, полагается и второму игроку. Значит, в кассе остается 2/3 — 2/9 — 2/9 = 2/9. Если игра все еще продолжается, то при третьем, последнем, броске повезти может и третьему игроку. Тогда права всех партнеров на оставшиеся деньги уравниваются. А посему остаток снова следует разделить на три части. Значит, первый получает еще одну треть от 2/9, то есть 2/27. А всего ему причитается:

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com