Исследование океанских глубин - Страница 7

Изменить размер шрифта:

С другой стороны, морские испытания «Алвина» позволили нам предупредить появление некоторых проблем при работе с «Дипстаром». Что же касается нашей непосредственной задачи — производства погружений на «Ныряющем блюдце», то из наблюдения за операциями «Алвина» мы не могли извлечь пользы.

НА БОРТУ «НЫРЯЮЩЕГО БЛЮДЦА»

В течение последних 25 лет Жак-Ив Кусто сделал больше, чем кто-либо другой, для того чтобы внушить единомышленникам желание проникнуть в глубины океана и подкрепить это желание собственным примером. Один из первопроходцев подводного мира, он твердо уверен, что море таит неограниченные ресурсы, которые человечество сможет использовать в недалеком будущем. Кусто можно, пожалуй, сравнить с Генрихом Мореплавателем, жившим и XV веке, который был вдохновителем исследователей — как своих современников, так и мореходов последующих поколений, — изучивших более половины поверхности Мирового океана.

Кусто при сотрудничестве Эмиля Ганьяна разработал и запатентовал в 1943 году акваланг — приспособление, позволившее многим тысячам людей своими глазами увидеть красоту подводного мира и наблюдать его обитателей. С помощью акваланга человек свободно погружается на глубину до 60 метров с целью исследования, производства различных работ и непосредственного знакомства с подводным миром. В акваланге используется легочный автомат — специальный регулятор, подающий воздух из баллона емкостью около 2 кубических метров, в котором он находится под давлением около 140 килограммов на квадратный сантиметр. Благодаря этому устройству пловец дышит, не ощущая давления окружающей его воды, так как воздух поступает к нему под таким же давлением. Однако этим прибором нужно пользоваться умело. На значительных глубинах аквалангисты могут почувствовать азотное опьянение и кислородное отравление — явления, хорошо знакомые водолазам. Хотя некоторые ныряльщики могут погружаться на глубины свыше 75 метров, большинство считает предельной именно эту глубину, на которой подводные работы или исследования безопасны. Так как запас воздуха уменьшается прямо пропорционально глубине погружения, то на глубинах свыше 60 метров аквалангист может находиться всего несколько минут, включая время, которое тратится еще и при подъеме на декомпрессию.

Необходимым условием для погружений является превосходное здоровье. Психологические перегрузки при погружении на значительную глубину доставляют неприятные минуты даже натренированным пловцам, а в некоторых случаях приводят к роковым последствиям.

Во многих районах моря существуют слои с резко различающейся температурой. Ко всему, на большой глубине видимость ухудшается, пловец оказывается в холодной воде, что ограничивает продолжительность и безопасность погружения.

Усовершенствованные в последнее время дыхательные аппараты позволяют человеку осваивать все более значительные глубины. Легким водолазам подается смесь, гелия и кислорода по шлангам из специальных резервуаров на глубинах до 180 метров. Применяя инертный газ вроде гелия, ныряльщик может избежать наркотического действия азота и токсического эффекта кислорода. Тем не менее техника погружения становится все более сложной и аквалангисты, за исключением хорошо подготовленных и обученных пловцов-профессионалов, осваивают ее с трудом.

В начале 50-х годов, когда акваланг только стал широко использоваться в Соединенных Штатах, Кусто вместе со своими коллегами погружался на значительные глубины, подчас более 90 метров. Они вели наблюдения за жизнью обитателей моря, проникали в подводные пещеры, изучали останки затонувших судов. Во время погружений на большую глубину они подвергались переохлаждению, а также азотному наркозу и глубинному опьянению. Кроме погружений с аквалангом, Кусто на борту «Калипсо» совершал рейсы в различные участки Мирового океана с целью сбора научных данных и производства наблюдений. Именно тогда он убедился в том, что человеку необходимо научиться работать не только на поверхности моря, но и на глубинах. В своей книге «Живое море» Кусто рассказывает о том, что ему довелось испытать во время постановки буя, когда шторм, продолжавшийся десять дней, застал его в море.

«В то время как мои, матросы, находясь на палубе судна, которое бросало из стороны в сторону словно щепку, пытались поднять на борт последние салазки с установленной на них фотокамерой, я стоял на левом крыле мостика, прищурив глаза, смотрел на солнце, прыгавшее то вверх, то вниз, слышал свист ветра в ушах и думал о пережитых нами мучениях. В течение десяти дней мы выбивались из сил ради того, чтобы раздобыть несколько фотографий. Я сломал барабан лебедки, таскал за собой фотокамеру, которая, как выяснилось, была неисправна, поневоле отстаивался на якоре, целыми часами вытравливал буксировочные тросы, потерял шар-зонд и 18 000 метров нейлонового троса. Ко всему прочему, какой-то глупый кальмар помешал установить радарный отражатель. Я поклялся, что вырвусь из этой паутины тросов и распрощаюсь со свирепой злобой моря. Я все более убеждался в том, что для исследования океанских глубин необходимы обитаемые подводные аппараты, сконструированные специально для подводных работ».

Только через несколько лет Кусто смог осуществить свою мечту. Разработка «Ныряющего блюдца» была начата еще в 1955 году во Французском управлении подводных исследований. Одна из групп, находившихся в распоряжении Кусто, обосновалась в Марселе. Кусто сообщил технические требования к аппарату Жану Моллару, главному конструктору, и Андре Лабану, руководителю управления. Основное условие заключалось в том, чтобы исследователь в аппарате, обеспечивающем безопасность и комфорт, мог достичь более значительных глубин, чем аквалангист. Кроме того, наблюдатель должен иметь хороший обзор внешнего пространства, возможность фотографировать и собирать образцы пород и животных. Но прежде всего аппарат должен обладать маневренностью аквалангиста.

Конструктивно аппарат представлял собой приплюснутую сферу. Такая форма позволяет двум наблюдателям, лежа ничком, смотреть в иллюминаторы. Значительное количество оборудования и приборов было вынесено наружу, за пределы прочной сферы, чтобы аппарат обладал большей плавучестью. Так, тяжелые аккумуляторные батареи, движительная установка и детали управления были закреплены снаружи и закрыты лишь обтекателем из стеклопластика. Корпус эллипсоидной формы (максимальный диаметр 1,8 метра) состоял из двух сваренных вместе половин, изготовленных из мягкой стали толщиной 1,8 сантиметра. Он имел следующие отверстия: два конических иллюминатора диаметром 16 сантиметров, три небольшие оптические линзы с широким обзором, расположенные в верхней части аппарата, иллюминатор для кинокамеры и восемь отверстий для прохода гидравлических труб и электрических кабелей.

В 1957 году не существовало камер высокого давления для проверки прочности корпуса: в имевшихся не мог разместиться аппарат такой величины. Поэтому испытания корпуса на прочность производились в море, как это происходит и поныне при проверке крупных аппаратов вроде «Алюминаута». Предусмотренная для «Ныряющего блюдца» эксплуатационная глубина составляла 300 метров. Корпус получил обозначение DS-1 (от английского «Ныряющее блюдце»). Испытания производились с борта «Калипсо» в Кассисе (Франция), неподалеку от участка, где прежде проводили научно-исследовательские работы ученые Центра подводных исследований. Во время первых серий погружений аппарат, на котором не было людей, прикрепляли к тросу. Чтобы компенсировать вес экипажа и оборудования, в корпус поместили смычку якорь-цепи и другой груз. Корпус погружался до глубины 900 метров, причем запас прочности составлял 3—1, намного превышая коэффициент у подводных лодок, равный примерно 1,5—1. Требование высокой надежности предъявлялось ко многим деталям «Блюдца», хотя и отражало консервативный подход к решению технических задач. Но за время работ с «Ныряющим блюдцем» мы смогли убедиться в справедливости принципов, которыми руководствовались при проектировании и строительстве аппарата.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com