Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Страница 7

Изменить размер шрифта:
Слабое ядерное взаимодействие

Сила слабого ядерного взаимодействия обуславливает некоторые виды радиоактивного распада. Поскольку радиоактивные вещества при распаде выделяют тепло, слабое ядерное взаимодействие вносит свой вклад в нагревание радиоактивных пород в глубинных слоях планеты. Благодаря в том числе и этому нагреванию действуют вулканы; во время редких, но мощных извержений расплавленные породы достигают поверхности земли. Силы слабого и электромагнитного взаимодействий применяются для лечения тяжелых заболеваний: радиоактивный йод уничтожает опухоли щитовидной железы и помогает бороться с некоторыми видами рака. Сила радиоактивного распада может быть и губительной: она стала причиной серьезного ущерба при авариях на Чернобыльской АЭС и АЭС «Три-Майл-Айленд». Кроме того, результатом действия этой силы становятся радиоактивные отходы – неизбежный побочный продукт производства ядерного оружия и работы атомных электростанций – продукт, способный причинять вред на протяжении миллионов лет.

Сила тяжести

Сила гравитационного взаимодействия не дает Земле и другим планетам сойти с орбит и cкрепляет галактику. Без силы земного тяготения вращение планеты отбрасывало бы нас в космос словно тряпичных кукол. Воздух, которым мы дышим, быстро улетучился бы в космос, а мы умерли бы от удушья, жизнь на Земле сделалась бы невозможной. Без гравитационной силы Солнца все планеты, в том числе и Земля, были бы выброшены из Солнечной системы в холодные космические дали, где солнечный свет слишком слаб, чтобы способствовать жизни. В сущности, без силы гравитационного взаимодействия взорвалось бы и само Солнце. Солнце – это результат точного уравновешивания силы гравитации, стремящейся сдавить эту звезду, и силы ядерного взаимодействия, стремящейся разорвать ее. Если бы не гравитация, Солнце взорвалось бы, как триллионы триллионов водородных бомб.

В настоящее время основной задачей, стоящей перед теоретической физикой, является объединение этих четырех сил в одну. Начиная с Эйнштейна, титаны физики XX в. пытались найти метод такого объединения и при каждой попытке терпели фиаско. Возможно, решение, которое ускользало от Эйнштейна последние 30 лет его жизни, находится в гиперпространстве.

В поисках объединения

Однажды Эйнштейн сказал: «Природа показывает нам только львиный хвост. Но я нисколько не сомневаюсь в том, что этот хвост принадлежит льву, хотя увидеть его целиком невозможно ввиду колоссальных размеров». Если Эйнштейн прав, тогда, вероятно, четыре силы – это «львиный хвост», а многомерное пространство-время – сам «лев». Эта идея пробудила надежду, что физические законы Вселенной, описанные в книгах, заполненных таблицами и графиками, удастся когда-нибудь объяснить с помощью единственной формулы.

Центральная мысль этой революционной концепции Вселенной состоит в том, что в основе единства Вселенной, возможно, лежит многомерная геометрия. Говоря попросту, материя во Вселенной и силы, которые не дают ей разлететься и придают ошеломляющее, бесконечное разнообразие замысловатых форм, могут оказаться не чем иным, как различными вибрациями гиперпространства. Однако эта концепция идет вразрез с традиционными представлениями ученых, рассматривающих пространство и время всего лишь как сцену, на которой главные роли исполняют звезды и атомы. Зримая, материальная Вселенная кажется ученым бесконечно более богатой и разнообразной, нежели пустая неподвижная арена незримой Вселенной пространства-времени. Исторически сложилось, что почти все интенсивные исследования в физике частиц и солидные вливания государственных средств в конце концов приводили к систематизации свойств субатомных частиц, таких как «кварки» и «глюоны», а не к постижению природы геометрии. Но теперь до ученых постепенно доходит, что «никчемные» концепции пространства и времени могут оказаться первоисточником красоты и простоты в природе.

Первая теория многомерности получила название теории Калуцы – Клейна в честь двух ученых, предложивших новую теорию гравитации, согласно которой свет можно объяснить вибрациями в пятом измерении. Примененные к N-мерному пространству (где N – любое целое число), кажущиеся нескладными теории субатомных частиц вдруг приобретают поразительную гармоничность. Однако старая теория Калуцы – Клейна не определяет точную величину N, вдобавок при описании всех субатомных частиц возникают технические сложности. У более совершенного варианта этой теории, названной теорией супергравитации, тоже есть недостатки. Интерес к этой теории вспыхнул в 1984 г. с подачи физиков Майкла Грина и Джона Шварца, доказавших последовательность наиболее совершенного варианта теории Калуцы – Клейна, названного теорией суперструн и утверждающего, что вся материя состоит из мельчайших колеблющихся струн. Удивительно, но теория суперструн предсказывает точное количество пространственно-временных измерений – десять[3].

Преимущество десятимерного пространства заключается в том, что нам «хватает места» для размещения всех четырех фундаментальных сил. Более того, мы получаем простую физическую картину для объяснения беспорядочной мешанины субатомных частиц, сведения о которых получены с помощью наших мощных ускорителей. За последние 30 лет сотни субатомных частиц были выявлены физиками среди осколков, полученных при столкновении протонов и электронов с атомами, тщательно классифицированы и изучены. Как и энтомологи, педантично дающие названия бесчисленным насекомым, физики порой сталкиваются с огромным разнообразием и сложностью этих субатомных частиц. В настоящее время согласно теории гиперпространства это невероятное собрание субатомных частиц может объясняться просто как вибрации.

Путешествие сквозь пространство и время

Теория гиперпространства также привела к пересмотру вопроса о том, можно ли с помощью гиперпространства совершать путешествия сквозь пространство и время. Для понимания этой концепции представим себе популяцию мелких плоских червячков, живущих на поверхности большого яблока. Для этих червячков очевидно, что их мир, который они называют Яблокомиром, плоский и двумерный, как они сами. Но один червячок по имени Колумб одержим мыслью, что Яблокомир конечен и, загибаясь, переходит в другое измерение, которое Колумб называет «третьим». Он даже придумывает два новых слова – «верх» и «низ» – специально для описания движения в этом незримом третьем измерении. Но друзья потешаются над Колумбом за упрямую веру в то, что Яблокомир может переходить в некое неизвестное измерение, которое никто не может увидеть или пощупать. Однажды Колумб пускается в долгое и трудное путешествие и скрывается за горизонтом. В конце концов он возвращается в исходную точку, стремясь доказать, что его мир действительно описывает кривую линию в невидимом третьем измерении. Его путешествие подтверждает, что Яблокомир действительно описывает кривую и переходит в невидимое третье измерение. Несмотря на усталость после путешествия, Колумб обнаруживает, что есть и другой способ преодолеть расстояние между удаленными друг от друга точками на яблоке: вгрызаясь в яблоко, можно проделать в нем туннель и таким образом создать удобный путь напрямик в дальние края. Такие туннели, благодаря которым путешествия становятся гораздо более удобными и менее продолжительными, Колумб называет червоточинами. Они свидетельствуют о том, что кратчайший путь между двумя точками – не обязательно прямая линия, как его учили, а червоточина.

Колумб обнаруживает необычный эффект: когда он входит в такой туннель и выходит из него с другой стороны, то попадает в прошлое. По-видимому, червоточины соединяют части яблока, где время движется с разной скоростью. Некоторые червячки даже утверждают, что червоточины можно превратить в действующую машину времени.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com