Гений. Жизнь и наука Ричарда Фейнмана - Страница 2

Изменить размер шрифта:

И вот теперь, выступая перед своими более зрелыми коллегами, собравшимися в гостиной поместья Поконо, Фейнман понял, что испытывает замешательство, причем это чувство стало усиливаться. Он нервничал, хотя для него это было нехарактерно. Он не выспался. И, конечно же, он тоже слышал прекрасное выступление Швингера и опасался, что его собственное на таком фоне будет выглядеть недоработанным. Фейнман пытался объяснить новый метод, позволяющий делать более точные вычисления, в которых так нуждались физики. Пожалуй, нечто большее, чем метод – новое видение, своего рода танец, потрясающая картина, составленная из частиц, символов, стрелок и пространств. Идеи и предположения выглядели непривычными, а слегка взбалмошный стиль Ричарда раздражал некоторых европейцев. Его пронзительные гласные, напоминавшие городской шум. Согласные, которые он глотал на манер представителей низших слоев общества. Фейнман слегка раскачивался на месте, переминаясь с ноги на ногу, и постоянно крутил кусочек мела между пальцами. До его тридцатилетия оставалось несколько недель, и для мальчика-вундеркинда он был уже слишком стар. Он попытался опустить детали, которые могли вызвать вопросы, но опоздал. Эдвард Теллер, придирчивый венгерский физик, работавший после войны над проектом создания водородной бомбы «Супер», перебил его.

– А как же принцип запрета?[10] – спросил он.

Фейнман надеялся избежать этого вопроса. В соответствии с принципом запрета только один электрон мог находиться в определенном квантовом состоянии. Теллер был уверен, что поймал Фейнмана, пытающегося вытащить двух кроликов из одной шляпы. В самом деле, в теории Фейнмана частицы, казалось, нарушали этот чтимый всеми принцип, возникший из ниоткуда.

– Это не важно, – начал Фейнман.

– С чего вы взяли?

– Я знаю, я работал с…

– Как такое возможно?! – заявил Теллер.

Фейнман рисовал на доске непривычные диаграммы. Он показал, что частица антиматерии движется в обратном направлении во времени. Это заинтриговало Дирака, ведь именно он первым заговорил о существовании антиматерии. И вот теперь уже Дирак задал вопрос о причинно-следственной связи.

– Они унитарны?

Унитарны! Да что он хотел этим сказать?

– Я объясню, – начал Фейнман, – и когда вы увидите, как это работает, вы сами решите, унитарны ли они.

Он продолжил, но время от времени в голове у него все еще звучало ворчание Дирака: «Они унитарны?»

Фейнман, блестящий в расчетах, профан в литературе, страстно преданный физике, дерзкий, когда дело касалось доказательств, в этот раз переоценил свою способность произвести впечатление на этих великих ученых и убедить их. Однако, по правде говоря, ему удалось найти то, что безуспешно искали его старшие коллеги – способ вывести физику на совершенно иной уровень. Он заложил теоретические основы новой науки, которая объединила прошлое и будущее в величественном полотне. Дайсон, друг Ричарда по Корнеллскому университету, по этому поводу заметил: «Это удивительный взгляд на мир как на переплетения мировых линий в пространстве и времени, где все находится в свободном движении. Это обобщающий принцип, способный объяснить все или не объяснить ничего».

Физика XX века оказалась в сложной ситуации. Представители старшего поколения искали способы, позволяющие им обойти ограничения при проведении расчетов. И хотя слушатели Фейнмана были открыты новым идеям молодого физика, все же над ними властвовали привычные представления о мире атомов. Нельзя сказать, что ученые придерживались единой точки зрения, их взгляды различались, но четкого понимания происходящих процессов не было ни у кого. Одни были сторонниками волновой теории – «математических волн», движущихся из прошлого в настоящее. Часто, впрочем, волны вели себя как частицы, подобные тем, траектории которых Фейнман рисовал и стирал на доске. Для других же математические расчеты, цепочки сложных вычислений, в которых символы были своего рода камнями, позволяющими пройти по призрачной дорожке в тумане, служили просто прикрытием. Их система уравнений отражала микроскопический невидимый мир, игнорирующий логику поведения простых объектов, таких как движение бейсбольного мяча или волн на поверхности воды. Совершенно обычных явлений, у которых, как написал в своем стихотворении Уистен Оден,

Слава богу, и масса определена,
А не абстрактная бурда,
Которая частично где-то.

Фейнман ненавидел это стихотворение.

Объекты, которые изучала квантовая механика, всегда находились где-то в другом месте. Диаграммы же, напоминающие узоры мелкоячеистой сетки, которые Фейнман вырисовывал на доске, были, напротив, довольно определенными. Траектории выглядели классическими благодаря своей точности и четкости. С места поднялся Нильс Бор. Он знал этого молодого физика еще со времен Лос-Аламоса, они тогда открыто и рьяно спорили, и Бор искал личной встречи с Ричардом, потому что ценил его честность. Но теперь его обеспокоили заключения, которые Фейнман делал, анализируя линии на своих диаграммах. Частицы у него, казалось, двигались по траекториям, четко зафиксированным во времени и пространстве. Но так быть не могло согласно соотношению неопределенностей[11].

– Мы уже знаем, что классическое представление о движении частицы по определенной траектории не работает в квантовой механике, – сказал Бор.

По крайней мере, это то, что услышал Фейнман. Мягкий голос и знаменитый датский акцент Бора заставляли всех напрягаться, чтобы понять суть. Бор вышел и произнес долгую уничижительную лекцию о принципе неопределенности. Фейнман, удрученный, стоял в стороне. Но он не показал своего отчаяния. Тогда в горах Поконо одно поколение физиков сменялось другим. И эта смена поколений не была столь очевидной и неизбежной, как оказалось потом.

Создатель квантовой теории, яркий молодой лидер проекта атомной бомбы, разработчик универсальной диаграммы Фейнмана, страстный любитель игры на бонго, прекрасный рассказчик, Ричард Филлипс Фейнман – выдающийся физик современности. В 1940-х годах на основе частично разработанных волнового и корпускулярного подходов он создал понятный инструмент, которым мог пользоваться любой физик. Фейнман обладал невероятной способностью проникать в суть проблемы. В среде ученых, организованной, приверженной традиционной культуре, нуждающейся в героях так же страстно, как в их ниспровержении, имя Ричарда обрело особый блеск. Его называли гением. Он оставался центральной фигурой в течение сорока лет, возглавляя послевоенную науку. Сорок лет, которые изменили представление о материи и энергии и направили тех, кто их изучал, в непредсказуемый и таинственный мир. Работа, показавшаяся такой невнятной собравшимся в горах Поконо, в итоге объединила в совершенную концепцию все существовавшие феномены в области света, радио, магнетизма и электричества. За нее Фейнман получил Нобелевскую премию.

Столь же значительны по крайней мере три из его дальнейших достижений: теория сверхтекучести, объясняющая поведение жидкого гелия, способного течь без трения; теория слабых взаимодействий, описывающая реакции радиоактивного распада; теория о существовании гипотетических частиц, находящихся внутри ядра атома, положенная в основу современного представления о кварках.

В основе новых, понятных лишь немногим открытий Фейнмана лежало его видение процессов взаимодействия частиц. Он постоянно искал новые загадки. Он не мог или скорее не хотел по-разному относиться к решению престижных вопросов физики элементарных частиц и случаев более скромных и тривиальных, которые, казалось бы, связаны с наукой прошлого века. Со времен Эйнштейна никто больше не работал над решением такого широкого спектра задач. Фейнман изучал трение на гладко отполированных поверхностях, надеясь (по большей части напрасно) понять принцип трения как таковой. Он пытался разобраться, как ветер образует волны в океане, и позднее заключил: «Мы ставим ногу в трясину, а поднимаем ее уже всю в грязи». Он изучал связь между упругими свойствами кристаллов и энергией атомов, из которых они состоят. Он применил теоретические знания к экспериментальным данным, относящимся к изготовлению плоских моделей из бумаги, называемых флексагонами. Он добился заметного прогресса – хотя его самого это не удовлетворило – в создании квантовой теории гравитации, которую упустил из виду Эйнштейн. В течение многих лет он пытался проникнуть в суть процесса турбулентности в газах и жидкостях. Фейнман вывел физику на принципиально новый уровень, сделал ее престижной наукой, что само по себе во много раз превосходит все его научные заслуги. Он стал легендой еще до своего тридцатилетия, когда опубликовал разве что докторскую диссертацию (довольно глубокую, но мало кем понятую) и несколько секретных документов по проекту в Лос-Аламосе. Мастер вычислений, он впечатлял тем, что буквально прорубал путь к решению сложных проблем. Выдающиеся ученые, считавшие себя беспрекословными авторитетами, увы, безнадежно проигрывали в сравнении с Фейнманом. Таким загадочным обаянием, как у него, мог обладать разве что гладиатор или чемпион по армрестлингу. Проявлению его личных особенностей не препятствовали ни звания, ни соблюдение внешних приличий, что подчеркивало его незаурядный ум. Английский писатель Чарльз Сноу, изучавший сообщество физиков, полагал, что Фейнману не хватает «солидности», свойственной его старшим коллегам. «Немного странно… – писал Сноу. – Он бы усмехнулся, если бы уличил себя в величественной недоступности. Он ведет себя как шоумен и наслаждается этим… Словно сам Граучо Маркс[12] внезапно возникает перед учеными». Он напоминал Сноу Эйнштейна, к тому времени такого вылизанного и великого, что мало кто помнил, каким «веселым мальчишкой» тот был во времена своих открытий. Возможно, и Фейнман бы вырос в столь же монументальную фигуру. А возможно, и нет. Сноу писал: «Молодым было бы интересно встретиться с Фейнманом, когда он достигнет преклонного возраста».

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com