Физика в технике - Страница 19
Для получения температуры в несколько миллионов градусов за границей в настоящее время используют мощные электрические разряды.
Однако недостаточно разопреть плазму до высоких температур, ее надо еще удержать при этих температурах более или менее продолжительное время. На помощь приходят так называемые магнитные ловушки, которые создают невидимый магнитный барьер, — непроницаемый для заряженных частиц высоких энергий (рис. 34).
Мощное магнитное поле, создаваемое специальными электромагнитами, может быть использовано как своеобразный сосуд для ионизированных газов, имеющих высокую температуру. Когда газ нагревается до температур, превосходящих 7–8 тысяч градусов, движение частиц в нем становится настолько сильным, что при ударах одна о другую молекулы начинают разрушаться. От них отрываются отдельные электроны, и остающиеся частицы приобретают положительный заряд, т. е. становятся положительными ионами. При дальнейшем назревании весь газ постепенно полностью ионизируется, т. е. все его частицы становятся ионами и несут на себе электрические заряды,
Частица, несущая электрический заряд, двигаясь в магнитном поле, взаимодействует с ним. В результате этого путь частицы искривляется. Поэтому сильно разогретый ионизированный газ, называемый обычно плазмой, не может вырваться из объема, пронизанного магнитным полем достаточной силы и соответствующей формы. Магнитное поле в данном случае образует своеобразный сосуд, в котором может содержаться сильно раскаленная плазма, быстро разрушающая любые вещества. Магнитное поле оказывается абсолютно жаропрочной формой материи.
В настоящее, время в Советском Союзе и за границей создано несколько подобных установок с магнитной изоляцией разогретой плазмы от стенок сосуда. В таких установках уже получены температуры порядка нескольких миллионов градусов. Дальнейшее увеличение температуры плазмы приводит к некоторым эффектам, которые практически сводят на нет все дальнейшие усилия в повышении температуры дейтериево-тритиевой смеси. Происходит это потому, что при весьма высоких температурах плазмы начинается чрезвычайно интенсивное рентгеновское излучение разогретой смеси, уносящее почти всю затрачиваемую энергию. Получается своего рода заколдованный круг: чем больше энергии вносится в плазму, тем выше становится ее температура и тем интенсивнее рентгеновское излучение, приводящее к остыванию плазмы. Кроме того, значительные трудности возникают при борьбе с неустойчивостью плазмы, которая при больших энергиях частиц начинает «просачиваться» сквозь магнитные «стенки» сосуда.
Сейчас трудно делать какие-либо прогнозы относительно сроков, когда станет возможным практическое использование энергии регулируемых термоядерных реакций. Однако рано или поздно эти трудности будут преодолены, и можно будет использовать поистине неисчерпаемый источник энергии — энергию термоядерных реакций.
ЗАКЛЮЧЕНИЕ
Рассмотренные в брошюре примеры показывают, что современные достижения техники прочно основываются на законах естествознания и в первую очередь на законах физики. Без изучения и понимания физической сущности явлений их нельзя использовать в современной технике. Также нельзя понять и должным образом использовать современную технику, не оценив ее возможностей с точки зрения физических законов, на основе которых она создана.
Для того чтобы владеть техникой и понимать пути ее дальнейшего развития, очень важно знать ее физическую основу.
Знание физических основ современной военной техники помогает объективно оценить ее действие в сложных условиях современного боя.
В брошюре освещены только некоторые вопросы, далеко не исчерпывающие всех достижений науки и техники.