Физика в технике - Страница 18
Чтобы «заставить» атом излучить поглощенную им энергию, можно подействовать на него каким-либо слабым внешним полем, например, облучить светом. В этом случае произойдет вынужденное (или индуцированное) испускание кванта света возбужденным атомом. Луч света, которым освещается такой атом, как бы «стряхнет» его с метастабильного уровня на более низкий, и при этом будет излучена энергия возбуждения атома.
Всеми свойствами, о которых шла |речь, обладают некоторые сорта стекол, шары металлического цезия, соединение кальция с фтором (CaF2), в котором часть ионов кальция заменена ионами самария или урана, а также твердое кристаллическое вещество — рубин.
Квантовомеханический генератор, работающий на кристалле рубина, позволяет получать монохроматический (одноцветный) луч света, яркость которого, отнесенная к единичному интервалу спектрального диапазона, более чем в миллион раз превышает яркость Солнца в данном диапазоне. Вследствие этого эквивалентная температура такого светового луча, генерируемого квантовомеханическим генератором, оценивается миллиардами градусов и во много раз превышает температуру в центре Солнца. При этом сам генератор остается холодным. Другой не менее интересной способностью такого генератора является то, что он позволяет получать почти параллельные лучи света с чрезвычайно малым угловым расхождением.
Так например, изготовленный в США генератор видимого света на основе искусственного рубинового стержня, генерирующий световые колебания с длиной волны 6943Å, позволяет получать лучи с угловым расхождением менее 0,1° при яркости, в миллион раз превышающей яркость Солнца.
В настоящее время за границей ведутся работы по созданию еще более узких лучей, расхождение которых не будет превышать нескольких угловых секунд. Если такой луч направить на Луну, то он создаст там такую же освещенность, какую может создать находящаяся рядом электрическая лампочка. Использование таких лучей позволяет осуществлять сверхдальнюю оптическую связь в космосе, секретную передачу информации и т. д.
Каким же образом получаются такие лучи света в квантовом генераторе?
Кристалл рубина, изготовленный в виде стержня с параллельными и тщательно отполированными посеребренными торцами, помещается внутрь мощной лампы-вспышки. Лампа-вспышка обычно представляет собой стеклянную или кварцевую трубку, выполненную в виде спирали, заполненную смесью неона и криптона и дающую при вспышке яркий зеленоватый свет.
Лампа-вспышка, освещая рубиновый стержень (рис. 32), переводит атомы хрома в рубине в возбужденное метастабильное состояние, в котором они находятся до того момента, пока их не «стряхнет» луч подсветки, пропущенный внутрь кристалла через непосеребренную часть поверхности одного из его торцов.[2] Такой луч, распространяясь в кристалле рубина, на своем пути «стряхивает» все новые и новые возбужденные атомы, и его яркость таким образом все время увеличивается. Дойдя до посеребренного противоположного торца кристалла, луч, отразившись, пойдет в обратном направлении, по пути увеличивая свою яркость, затем снова отразится от заднего посеребренного торца и так далее, пока, наконец, не выйдет из противоположного торца кристалла через непосеребренную часть его поверхности (рис. 33).
В результате получается весьма узкий луч, так как все лучи света, идущие под некоторыми углами к оси рубинового стержня, быстро уходят за пределы кристалла, не получив необходимого усиления.
В дальнейшем предполагается с помощью таких генераторов и усилителей фотографировать отдаленные космические объекты, усиливая яркость изображения, даваемую телескопами, управлять движением спутников, используя эффект светового давления, повышать точность оптических приборов, а также увеличить емкость диапазонов связи в десятки тысяч раз по сравнению с емкостью используемых в настоящее время радиодиапазонов.
Таковы лишь некоторые возможности использования квантовых генераторов, построенных на основе синтеза достижений различных областей науки и техники, и в первую очередь оптики, радиотехники и квантовой механики.
Проблемы создания управляемых термоядерных реакций
Во введении уже говорилось о том, что производство энергии растет быстрее, чем производство чугуна, стали, машин и других видов технической продукции.
В настоящее время пользуются различными источниками энергии, к которым относятся каменный уголь, нефть и ее производные, древесина, энергия рек, ветра. В последнее время все более широко начинает использоваться внутриядерная энергия и энергия Солнца.
Однако, учитывая поистине гигантское потребление энергии, которое из года в год увеличивается, можно предположить, что рано или поздно человечество окажется лишенным таких видов топлива, как нефть, уголь и даже уран-235, поскольку их мировые запасы в земной коре ограничены.
В связи с этим встает вопрос об использовании термоядерной энергии, т. е. энергии, выделяющейся при термоядерных реакциях (взрыв водородной бомбы).
Чтобы широко использовать эту энергию, таящуюся в недрах атомных ядер, необходимо научиться управлять такими реакциями.
Прежде чем переходить к изложению возможных путей решения этой проблемы и проводящихся экспериментов, расскажем о том, что собой представляют термоядерные реакции, т. е. в чем заключается их сущность.
Известно, что ядра атомов гелия 2Не4 состоят из двух протонов и двух нейтронов, находящихся в «связанном» состоянии. При этом часть внутренней энергии каждой из частиц переходит в энергию связи. Если рассмотреть реакцию образования ядер гелия из ядер тяжелого и сверхтяжелого водорода (дейтерия 1D2 и трития 1T3), протекающую по схеме
(нижние индексы означают заряд ядра в единицах заряда протона, верхние — числа, показывающие, во сколько раз данное ядро тяжелее ядра атома водорода), то оказывается, что сумма масс частиц после реакции (т. е. масса ядра гелия 2Не4 плюс масса нейтрона 0n1) меньше суммы масс ядер дейтерия и трития.
Согласно соотношению Эйнштейна, любой массе m соответствует энергия, равная mс2, где с — скорость света. В результате описанной реакции происходит превращение одного вида материи в другой, т. е. превращение массы в энергию. Энергия Е, выделяющаяся при термоядерных реакциях, огромна. Так, если «исчезнувшая» масса составляет 1 грамм, то выделившаяся в результате этого энергия будет равна mс2 = 1 г × (3·1010 см/сек)2 = 9·1020 эрг., т. е. примерно десяти тысячам миллиардов килограммометров. Чтобы реакция между дейтерием и тритием оказалась возможной, необходимы очень высокие температуры (порядка десятков и сотен миллионов градусов). При таких высоких температурах вещество переходит в новое, плазменное состояние. Скорости хаотического движения частиц в плазме оказываются настолько большими, что становится возможным прямое столкновение одноименно заряженных ядер дейтерия и трития, между которыми действуют силы кулоновского отталкивания.