Физика в технике - Страница 15

Изменить размер шрифта:

С эффектом Допплера часто встречаются в повседневной жизни. Так, при приближении поезда тон (частота звуковых колебаний) гудка выше нормального. При удалении поезда тон его становится гораздо ниже, т. е. частота звуковых колебаний уменьшается. Это происходит потому, что при движении поезда относительно наблюдателя (или наоборот) количество звуковых колебаний, попадающих в его ухо в единицу времени, либо увеличивается, либо уменьшается в зависимости от того, происходит сближение с источником или удаление от него. Разница тона гудка тем заметнее, чем с большей скоростью происходит это относительное движение.

На основе эффекта Допплера можно очень точно измерить скорость движущегося объекта. Использование этого эффекта для управления полетом ракеты обеспечило достижение ракетой поверхности Луны. Чтобы оценить эту точность, надо отметить, что если бы скорость ракеты, направленной на Луну, отличалась от расчетной на два — три метра в секунду, то точка попадания ракеты на Луну сместилась бы при этом на несколько сотен километров.

Современные системы радиоуправления ракетами представляют собой весьма сложные комплексы различной аппаратуры. С помощью таких систем возможен контроль работы бортовой аппаратуры, установленной на ракете, осуществление передачи радио- и телеинформации с борта ракеты, точнейший контроль параметров ее траектории, управление работой двигателей и многое другое.

Можно с уверенностью сказать, что без последних успехов в развитии радиофизики, радиотехники и электроники такие замечательные достижения, как запуски искусственных спутников Земли и космических кораблей, были бы невозможны.

Другой важной проблемой в ракетной технике считается выбор топлива для двигателей, занимающего по возможности меньший объем и обеспечивающего высокую скорость истечения продуктов сгорания из сопла ракетного двигателя.

Чем больше скорость v истечения продуктов сгорания, тем больше (при прочих равных условиях) скорость ракеты к моменту окончания работы ее двигателей. Этот важный закон был установлен и выражен математической формулой великим русским ученым К. Э. Циолковским, по имени которого и названа формула

Физика в технике - i_035.png

Из формулы следует, что конечная скорость ракеты тем больше, чем большую часть от общей массы М ракеты составляет топливо. Наиболее эффективно топливо может быть использовано в многоступенчатых ракетах (рис. 26).

Физика в технике - i_036.png
Рис. 26. Схема многоступенчатой ракеты

Идея создания многоступенчатых ракет была впервые высказана К. Э. Циолковским. В многоступенчатых ракетах по мере сгорания части топлива избавляются от ненужных конструкций, отцепляют отработавшую ступень. Практическая ценность этой идеи тем более очевидна, что многоступенчатые ракеты позволили осуществить запуск первых искусственных спутников Земли. Запуск подтвердил правильность теории космических полетов, которой Циолковский посвятил свои многочисленные труды.

«Земля, — писал Циолковский, — колыбель разума, но нельзя вечно жить в колыбели».

И вот теперь все человечество является свидетелем того, как успешно претворяется в жизнь мечта великого ученого. Недалек тот день, когда на Луну и ближайшие планеты ступит нога человека — покорителя бесконечных и величественных просторов Вселенной. Пройдут годы, и человек устремится к иным мирам — мирам самых отдаленных звезд, подобных нашему Солнцу, и не исключена возможность того, что в окрестностях таких звезд будут обнаружены планеты, подобные нашей Земле. Для осуществления таких полетов потребуются уже совершенно иные типы ракет, которые будут двигаться со скоростью, близкой к скорости света.

Физика в технике - i_037.png

Физика в технике - i_002.png

НЕКОТОРЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ФИЗИКИ И ТЕХНИКИ

На протяжении всей истории развития физики и техники возникали те или иные проблемы, которые требовали безотлагательного решения. Появление таких проблем определяется, с одной стороны, новыми задачами и требованиями как с теоретической, так и е производственной точки зрения и, с другой стороны, необходимостью пересмотра некоторых старых теорий или отдельных положений, что обусловливалось всем ходом предшествующего развития науки и техники.

Так, развитие судоходства привело к созданию парового двигателя для кораблей, а целый ряд новых открытий б области физики, не укладывавшихся в рамки старой теории (например, открытие и исследование фотоэффекта, опыты Майкельсона, работы Эйнштейна), привели к созданию новой теории — теории относительности, которая коренным образом изменила наши представления о пространстве и времени.

В этом разделе будут рассмотрены некоторые вопросы, связанные с прочностью материалов и конструкций в связи с быстрым развитием строительной техники и появлением новых, в частности синтетических материалов.

Другой весьма важной проблемой нашего времени является проблема освоения новых источников энергии. В связи с этим остановимся на возможности использования энергии приливов и отливов, а также на некоторых вопросах, связанных с созданием управляемых термоядерных реакций, расскажем о явлении, возникшем на стыке трех отраслей физики — квантовой механики, оптики и радиофизики, а именно о явлении, лежащем в основе квантового генератора лучистой энергии.

Прочность материалов и конструкций

В атомах и молекулах в нормальном их состоянии содержится равное число электронов (в электронных оболочках) и протонов (в атомных ядрах). Поэтому электрические силы действуют только внутри атомов и молекул. На достаточно больших расстояниях от молекул электрические силы электронов и протонов компенсируются и не производят заметного действия. Однако если молекулы подходят близко друг к другу, то они могут отталкиваться или притягиваться в зависимости от своего строения и взаимного положения. Чем плотнее вещество, тем заметнее силы взаимодействия. Наличием этих сил объясняется способность капель жидкости висеть на проводах и различных выступах, не падая вниз под действием силы тяжести.

Эти силы, притягивают жидкости к твердым телам, давая возможность воде насыщать грунты, цемент, бетон, позволяя краске прилипать к окрашиваемой поверхности, влаге почвы подниматься по стволам растений к листьям и плодам.

Точно так же прочность твердых тел, столь важная в технике, обусловлена молекулярными силами, связывающими в единое твердое тело все образующие его молекулы или атомы.

Наиболее ярко свойства твердых тел выражены в кристаллах. Кристаллы — это такие твердые частицы тела, которые в процессе образования, например при охлаждении расплавленного вещества, принимают правильные геометрические формы. Это обусловлено появлением определенного порядка в расположении частиц, образующих твердое тело. Так, в некоторых кристаллах атомы вещества (располагаются определенным образом: именно так, чтобы взаимное притяжение было бы наибольшим (рис. 27, а). Кристаллы очень прочны.

При образовании алмаза из углерода атомы углерода, входящие в кристалл, очень прочно связываются друг с другом. Действительно, алмаз является очень твердым и очень прочным телом и поэтому широко применяется в технике как материал для резания и сверления прочных и твердых тел. Графит представляет собой несколько другое соединение атомов углерода и обладает значительно меньшей прочностью (рис. 27, б).

Многие тела, в частности металлы, состоят из большого количества очень мелких кристаллов, беспорядочно соединенных друг с другом. Это так называемые микрокристаллические тела. Различные виды обработки металлов (отжиг, закалка, ковка, прокат, штамповка, волочение и т. д.) сильно влияют на размеры и взаимное расположение кристаллов, образующих металл.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com