Физика невозможного - Страница 4
Лоренс Краусс, Университет Кейз – Вестерн Резерв, автор книги «Физика в Star Trek»
Ричард Готт III, Принстонский университет, автор книги «Путешествия во времени во вселенной Эйнштейна»
Алан Гут, физик, MIT, автор книги «Инфляционная вселенная»
Джон Барроу, физик, Кембриджский университет, автор книги «Невозможность»
Пол Дэвис, физик, автор книги «Суперсила»
Леонард Зусскинд, физик, Стэнфордский университет
Джозеф Ликкен, физик, Национальная лаборатория имени Ферми
Марвин Мински, MIT, автор книги «Общество разумов»
Рей Курцвейл, изобретатель, автор книги «Эра одушевленных машин»
Родни Брукс, директор Лаборатории искусственного интеллекта MIT
Ганс Моравек, автор книги «Робот»
Кен Кросвелл, астроном, автор книги «Величественная вселенная»
Дон Голдсмит, астроном, автор книги «Сбежавшая вселенная»
Нейл де Грассе Тайсон, директор Хейденовского планетария, Нью-Йорк
Роберт Киршнер, астроном, Гарвардский университет
Фульвиа Мелиа, астроном, Университет Аризоны
Сэр Мартин Рис, Кембриджский университет, автор книги «До начала»
Майкл Браун, астроном, Калтех
Пол Гилстер, автор книги «Мечты о Центавре»
Майкл Лемоник, старший научный редактор журнала Time
Тимоти Феррис, Университет Калифорнии, автор книги «Зрелость во Млечном пути»
покойный Тед Тейлор, разработчик американских ядерных боеголовок
Фримен Дайсон, Институт перспективных исследований, Принстон
Джон Хорган, Технологический институт Стивенса, автор книги «Конец науки»
покойный Карл Саган, Корнеллский университет, автор книги «Космос»
Энн Друян, вдова Карла Сагана, Cosmos Studios
Питер Шварц, футурист, основатель Global Business Network
Элвин Тоффлер, футурист, автор книги «Третья волна»
Дэвид Гудстейн, помощник проректора Калтеха
Сет Ллойд, MIT, автор книги «Программирование вселенной»
Фред Уотсон, астроном, автор книги «Звездочет»
Саймон Сингх, автор книги «Большой взрыв»
Сет Шостак, Институт SETI
Джордж Джонсон, научный обозреватель New York Times
Джеффри Хоффман, MIT, астронавт NASA
Том Джоунз, астронавт NASA
Алан Лайтман, MIT, автор книги «Мечты Эйнштейна»
Роберт Зубрин, основатель Марсианского общества
Донна Ширли, программа исследования Марса NASA
Джон Пайк, GlobalSecurity.org
Пол Саффо, футурист, Институт будущего
Луис Фридман, один из основателей Планетарного общества
Дэниел Вертхеймер, [email protected], Университет Калифорнии в Беркли
Роберт Зиммерман, автор книги «Покидая Землю»
Марша Братусяк, автор книги «Неоконченная симфония Эйнштейна»
Майкл Саламон, программа «После Эйнштейна» NASA
Джефф Андерсен, Академия ВВС США, автор книги «Телескоп»
Я также хотел бы поблагодарить моего агента Стюарта Кричевски, который помогал мне в течение всех этих лет и занимался всеми моими книгами, а также редактора Роджера Шолла, чьи твердая рука, здравые суждения и редакторский опыт направляли многие мои книги. Я бы также хотел поблагодарить моих коллег из нью-йоркского Сити-Колледжа и аспирантуры Городского университета Нью-Йорка, в особенности В.П. Наира и Дэна Гринбергера, которые любезно нашли время для дискуссий.
Часть I
Невозможности i класса
1. Защитное силовое поле
I. Если заслуженный, но пожилой ученый утверждает, что некое явление возможно, он наверняка прав. Если он утверждает, что некое явление невозможно, он, весьма вероятно, ошибается.
II. Единственный способ определить пределы возможного – это набраться смелости и проникнуть на ту строну, в невозможное.
III. Любая достаточно развитая технология неотличима от волшебства.
«Поднять щиты!» – так звучит первый приказ, который в бесконечном сериале «Звездный путь» отдает резким голосом капитан Кирк своему экипажу; послушный приказу экипаж включает силовые поля, призванные защитить космический корабль «Энтерпрайз» от огня противника.
В сюжете «Звездного пути» силовые поля настолько важны, что их состояние вполне может определить исход сражения. Стоит энергии силового поля истощиться, и корпус «Энтерпрайза» начинает получать удары, чем дальше, тем сокрушительнее; в конце концов поражение становится неизбежным.
Так что же такое защитное силовое поле? В научной фантастике это обманчиво простая штука: тонкий невидимый, но при этом непроницаемый барьер, способный одинаково легко отражать лазерные лучи и ракеты. На первый взгляд силовое поле представляется настолько простым, что создание – и скорое – боевых щитов на его основе кажется неминуемым. Так и ждешь, что не сегодня-завтра какой-нибудь предприимчивый изобретатель объявит, что ему удалось получить защитное силовое поле. Но истина гораздо сложнее.
Подобно лампочке Эдисона, которая коренным образом изменила современную цивилизацию, силовое поле способно глубоко затронуть все без исключения стороны нашей жизни. Военные воспользовались бы силовым полем, чтобы стать неуязвимыми, создали бы на его основе непроницаемый щит от вражеских ракет и пуль. В теории можно было бы создавать мосты, великолепные шоссе и дороги одним нажатием кнопки. Целые города возникали бы в пустыне словно по мановению волшебной палочки; все в них, вплоть до небоскребов, строилось бы исключительно из силовых полей. Купола силовых полей над городами позволили бы их обитателям произвольно управлять погодными явлениями – штормовыми ветрами, снежными бурями, торнадо. Под надежным пологом силового поля можно было бы строить города даже на дне океанов. От стекла, стали и бетона можно было бы вообще отказаться, заменив все строительные материалы силовыми полями.
Но, как ни странно, силовое поле оказывается одним из тех явлений, которые чрезвычайно сложно воспроизвести в лаборатории. Некоторые физики даже полагают, что это вообще не удастся сделать без изменения его свойств.
Майкл Фарадей
Концепция физического поля берет начало в работах великого британского ученого XIX в. Майкла Фарадея.
Родители Фарадея принадлежали к рабочему классу (его отец был кузнецом). Сам он в начале 1800-х гг. состоял в подмастерьях у переплетчика и влачил достаточно жалкое существование. Но юный Фарадей был зачарован недавним гигантским прорывом в науке – открытием таинственных свойств двух новых сил, электричества и магнетизма. Он жадно поглощал всю доступную ему информацию по этим вопросам и посещал лекции профессора Хамфри Дэви из Королевского института в Лондоне.
Однажды профессор Дэви серьезно повредил глаза во время неудачного химического эксперимента; понадобился секретарь, и он взял на эту должность Фарадея. Постепенно молодой человек завоевал доверие ученых Королевского института и получил возможность проводить собственные важные эксперименты, хотя нередко ему приходилось терпеть и пренебрежительное отношение. С годами профессор Дэви все ревнивее относился к успехам своего талантливого молодого помощника, который поначалу считался в кругах экспериментаторов восходящей звездой, а со временем затмил славу самого Дэви. Только после смерти Дэви в 1829 г. Фарадей получил научную свободу и осуществил целую серию поразительных открытий. Результатом их стало создание электрических генераторов, обеспечивших энергией целые города и изменивших ход мировой цивилизации.
Ключом к величайшим открытиям Фарадея стали силовые, или физические, поля. Если поместить железные опилки над магнитом и встряхнуть, выяснится, что опилки укладываются в рисунок, напоминающий паутину и занимающий все пространство вокруг магнита. «Нити паутины» – это и есть фарадеевы силовые линии. Они наглядно показывают, как распределяются в пространстве электрическое и магнитное поля. К примеру, если изобразить графически магнитное поле Земли, то обнаружится, что линии исходят откуда-то из области Северного полюса, а затем возвращаются и снова уходят в землю в области Южного полюса. Аналогично, если изобразить силовые линии электрического поля молнии во время грозы, выяснится, что они сходятся на кончике молнии.