Физика для "чайников" (СИ) - Страница 2

Изменить размер шрифта:

Вкратце и поумнее: траектория - воображаемая линия, по которой движется материальная точка. Путь - длина траектории. Перемещение - направленный отрезок (или уж совсем по-умному - вектор), соединяющий начальное и конечное положения тела.

Всё, наконец-то все приготовления закончили. Теперь, собственно, а зачем всё это было нужно. Считается, что полный венец любой решённой задачи механики, когда всё становится хорошо - когда мы можем знать, в какой момент наше подопытное туловище где находится, суметь предсказать его движение в дальнейшем или вспомнить, что было "до того". Вроде бы кажется страшно сложным, но строгая математика тут грозит пальцем: для неё ничего сложного здесь нет. Почему? Потому, что можно выделить всего три вида движения: равномерное прямолинейное, неравномерное и равномерное движение по окружности. Равномерное прямолинейное - это как на шоссе. Вдарил 120 - и езжай хоть целый день, если дорога достаточно длинная. Всё время едешь постоянно 120 км/ч - значит, движешься равномерно. И прямолинейно, если без крутых поворотов. Если 120 вдарить на кольцевом стадионе, получится движение по окружности. А если нажать на тормоз и держать педаль в одном положении, пока не остановишься - получится неравномерное движение, если совсем точно - равнозамедленное: тормозишь, едешь всё медленнее и медленнее, причём каждую секунду скорость понижается одинаково.

То есть, по-русски: равномерное - значит, за любой промежуток времени у тебя будет одно и то же перемещение. Если взять ту же машину, то за каждый час это будет 120 километров ровно, за каждую минуту - 20 км, ну и так далее. Неравномерное - это всё, что отличается от равномерного. За один час проехал 119 км, а за второй 120 - всё, если считать строго, это уже неравномерно. Движение по окружности стоит особняком: там перемещение получается всегда меньше, чем любой из путей, особенно если приезжаешь ровно в ту же точку, откуда уехал. Но если скорость по значению остаётся одна и та же, то оно будет равномерным.

Да. Скорость. К счастью, это та же самая скорость, с которой привыкли обычно иметь дело, только мерят её не в километрах в час, а в метрах в секунду. Это если говорить о её значении, или - по-умному – о модуле. Да-да, тот самый модуль с палочками из математики. К сожалению, он не полностью определяет скорость в физике. Полностью будет, если ещё и задать ей направление. То есть - по-умному - получается вектор. Отрезок со стрелочкой: если знаешь, куда направлен и сколько длина, только тогда всё хорошо. Тогда скорость известна.

А если рядом с нашей едущей машиной проедет другая? Тоже со скоростью 120 километров в час? Тогда получится, что относительно нас она стоит на месте. Потому что скорости одинаковые. Если будет чуть быстрее (например, 121) - то очень медленно станет двигаться вперёд. Чуть медленнее (ну, скажем, 119) - так же медленно, но назад. То есть скорость нашей машины вычитается из той, второй. 121 минус 120 будет 1 - понятно, медленно ползёт вперёд. А 119 - 120 будет -1 (минус один). Что означает - она по-прежнему едет, но не вперёд, а в противоположную сторону, задом наперёд. Что нам и кажется - она как бы медленно даёт задний ход с той же скорость 1 км/ч.

Вкратце и поумнее: при равномерном прямолинейном движении тело за один и тот же промежуток времени совершает одинаковые перемещения. Если хотя бы для одного промежутка времени это не соблюдается, движение не равномерное. Скорость при равномерном движении - это перемещение, которое совершили, делить на время, за которое оно было совершено, т.е. тоже вектор - и, как даже можно догадаться, постоянный по модулю. Единица измерения - метр в секунду (м/с). При движении двух тел в некоторой системе отсчёта, чтобы посчитать скорость движения второго тела относительно первого, достаточно из скорости второго тела вычесть скорость первого.

Ну, это всё был идеал. Равномерное движение - это то, чего хотят составители расписания автобусов, поездов метро и прочего транспорта. Которое, как мы видим, толком и не соблюдается - а даже если и соблюдается, то не секунда в секунду, а всё равно с отклонениями. Потому что движение там хоть и прямолинейное, но никак не равномерное. Трудно очень удержать одну и ту же скорость в наше нелёгкое время. Для этого физика предусмотрела более широкий вариант - под названием переменное движение.

При нём тоже есть скорость, только она имеет немного другой характер. Это всё то же "перемещение поделить на время", но есть одно "но". Скорость-то всё время меняется. Если смотреть от того момента, как начал двигаться, до того, как закончил - то есть за большое время. А если посмотреть время поменьше - будет меняться более плавно. Ну и, наконец, если совсем-совсем сузить обзор, то будет казаться, что скорость вообще постоянная - но за очень маленький промежуток времени. Поэтому здесь получается так: очень маленькое перемещение делить на очень маленькое время. Настолько маленькое, что оно стремится к мигу, к нулю то бишь. В страшной математике (на которую, увы, физика опирается) такую дробь называют производной. Если совсем по-русски - то это скорость изменения по тому, по чему "производят". То есть получается, что скорость здесь - это скорость изменения перемещения во времени. Или, совсем по-простому - как с течением времени меняется то самое разное расстояние, которое мы проезжаем на той же машине.

И всё бы хорошо, да вот скорость-то эта меняется всё время. И считать её получается совсем невыгодно - чтобы точно знать, как что движется, придётся считать эту скорость чёрт-те сколько раз. Поэтому придумали ещё одну фишку.

Называется она ускорением. Это как бы вторая производная - оно показывает, как меняется скорость. Если смотреть так же - при очень маленьком времени это будет изменение скорости делить на время. То есть получается, что это скорость изменения скорости. Тоже получается всё тот же несчастный вектор - из-за того, что скорость векторная, а время - число. А как мерят его - можно даже догадаться. Если метр в секунду разделить на секунду, получится метр на секунду в квадрате. Звучит странно, но именно в таких единицах и мерят. Хорошо ещё, что не обзывают никак дополнительно, а то в физике местами есть такие загоны - все величины называть именами кого-нибудь. Но в механике это ещё не так заметно.

Ладно, отвлеклись. Зачем вообще нужны все эти заумные скорости, ускорения, скорости изменения скорости и ещё чёрт знает чего... А вот зачем. Переменное движение, вообще говоря, может быть ускоренным или замедленным. Когда едем на той же машине, мы либо потихоньку ускоряемся, либо потихоньку тормозим. И в большинстве случаев это движение бывает равноускоренным или равнозамедленным. Это означает, что ускорение при нём постоянно! То есть если посчитать его, то можно размотать клубок в обратном направлении - посчитать скорость в тот момент, который нам нужен, и перемещение за это время. А больше, как правило, и не просят, так что дальше можно расслабиться. Более того, разница между ускоренным и замедленным состоит всего лишь в знаке ускорения. Когда ускоряемся - оно положительно (здравый смысл рулит), а когда замедляемся - оно отрицательно, то бишь скорость со временем не увеличивается, а уменьшается - чтобы узнать, насколько, надо то число, которое стоит после минуса, умножить на то время, за которое тормозим. Например, за две секунды машина равнозамедленно движется с ускорением -4 м/(с^2) (^ - это значок возведения в степень). Это значит, что за каждые 2 секунды скорость машины снижается на 2*4 = 8 метров в секунду. То есть ехала сначала 30 метров в секунду, через 2 секунды 22 м/с, ещё через 2 - 14, ещё через 2 - 6, а до следующих двух дойти не успеем - она уже остановится.

Расстояние посчитать тут посложнее. Если посчитать, а сколько она за эти 6 секунд метров проехала, получится следующее. Надо умножить начальную скорость на время и сложить с этим следующее: ускорение, умноженное на квадрат времени, и всё это делённое пополам. Не спрашивайте, почему именно пополам - тут по-простому без математики, к сожалению, не объяснишь. (А почему именно на квадрат времени - догадаться можно.)

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com