Фейнмановские лекции по физике. 8. Квантовая механика I - Страница 6
Ознакомительная версия. Доступно 8 страниц из 37.
Фиг. 1.9. Рассеяние электронов с антипараллельными спинами.
Эти две возможности показаны на фиг. 1.9; в принципе они различимы, и поэтому интерференции не получится, просто сложатся две вероятности. Все это верно и тогда, когда оба первоначальных спина перевернуты, т. е. если спин слева смотрит вниз, а спин справа — вверх.
Таблица 1.1 · рассеяние неполяризованных частиц со спином 1/2

Наконец, если электроны вылетают случайно (например, они вылетают из накаленной вольфрамовой нити полностью неполяризованным пучком), то с равной вероятностью каждый отдельный электрон вылетит либо спином вверх, либо спином вниз. Если мы не собираемся в нашем опыте измерять в какой-нибудь точке спин электронов, то получается то, что называют экспериментом с неполяризованными частицами. Результат этого эксперимента лучше всего подсчитать, перечислив все мыслимые возможности, как это сделано в табл. 1.1. Для каждой различимой альтернативы отдельно подсчитана вероятность. Тогда полная вероятность есть сумма всех отдельных вероятностей. Заметьте, что для неполяризованных пучков результат при q=p/2 составляет половину классического результата для независимых частиц.
Поведение тождественных частиц приводит ко многим интересным следствиям; в следующей главе мы обсудим их поподробнее.
* Вообще-то направление рассеяния должно, конечно, описываться двумя углами — полярным углом j и азимутом q. Тогда следовало бы сказать, что рассеяние кислорода в направлении (q,j) означает, что a-частица движется в направлении (p-q, j+p). Однако для кулоновского рассеяния (и многих других случаев) амплитуда рассеяния не зависит от j. Тогда амплитуда того, что кислород полетел под углом 6, совпадает с амплитудой того, что a-частица полетела под углом (p-q).
* По-русски, наверно, правильнее говорить амплитуда вероятности, но короче говорить просто амплитуда и примириться с выражением типа «амплитуда того, что электрон находится в точке х».— Прим. ред.
* В американском издании этот том начинается с двух глав из второго тома [гл. 37 и 38 (вып. 3)], которые авторы считали нужным повторить. Это было сделано для того, чтобы третий том можно было читать, не обращаясь к прежним томам. В русском издании мы не стали печатать их снова: читатель должен всегда держать первые выпуски под рукой, поэтому нумерация глав в русском издании сдвинута на 2 единицы по сравнению с третьим томом. Из тех же соображений мы не перепечатали вновь гл. 34 и 35, они вошли в вып. 7.— Прим. ред.
Глава 2
ТОЖДЕСТВЕННЫЕ ЧАСТИЦЫ
§ 1.Бозе-частицы и ферми-частицы
§ 2.Состояния с двумя бозе-частицами
§ 3.Состояния с n бозе-частицами
§ 4.Излучение и поглощение фотонов
§ 5.Спектр абсолютно черного тела
§ 6.Жидкий гелий
§ 7.Принцип запрета
Повторить: гл. 41 (вып. 4) «Броуновское движение» (об излучении абсолютно черного тела гл. 42 (вып 4 «Применения кинетической теории»
§ 1. Бозе-частицы и ферми-частицы
В предыдущей главе мы начали рассматривать особые правила, по которым происходит с интерференция в процессах с двумя тождественными частицами. Тождественными мы считаем такие частицы, которые, подобно электронам, никак невозможно отличить друг от друга. Если в процессе имеются две тождественные частицы, то замена той, которая повернула к счетчику, на другую — это неотличаемая альтернатива, которая, как и во всех случаях неотличимых альтернатив, интерферирует с первоначальным случаем, когда обмена не было. Амплитудой события тогда служит сумма двух интерферирующих амплитуд, и существенно, что в одних случаях интерференция происходит в фазе, а в других — в противофазе.
Представим, что сталкиваются две частицы а и b и частица а рассеивается в направлении 1, а частица b — в направлении 2 (фиг. 2.1, а).

Фиг. 2.1. При рассеянии двух тождественных частиц процессы а и б неразличимы.
Пусть f(q) будет амплитуда этого процесса; тогда вероятность Р1наблюдения подобного события пропорциональна |f(q)|2. Конечно, могло случиться, что частица b рассеялась в счетчик 1, а частица а направилась в счетчик 2 (фиг. 2.1, б). Если считать, что никаких специальных направлений, определяемых спином или чем-то подобным, в опыте нет, то вероятность Р2 этого события можно просто записать в виде | f(p-q)|2, потому что этот процесс попросту эквивалентен первому процессу, в котором счетчик 1 поставили под углом (я — 6). И вам могло бы показаться, что амплитуда второго процесса равна просто f(p-q). Но это не обязательно так, потому что в ней мог стоять произвольный фазовый множитель. Иначе говоря, амплитуда могла бы быть такой:
Ведь и такая амплитуда все еще приводит к вероятности Р2, равной |f(p-q)|2.
Посмотрим теперь, что случается, если частицы a и b оказываются идентичными. Тогда два разных процесса, показанных на двух частях фиг. 2.1, уже нельзя друг от друга отличить. Существует амплитуда того, что а или b попадает в счетчик 1, тогда как оставшаяся частица попадает в счетчик 2. Эта амплитуда есть сумма амплитуд двух процессов, показанных на фиг. 2.1.
Если первую мы обозначим f(q), то вторая будет
равно либо +1, либо -1. Обмен приводит ко вкладу в амплитуду с тем же знаком или ко вкладу с противоположным знаком. И оба случая встречаются в природе, каждый для своего класса частиц. Частицы, интерферирующие с положительным знаком, называются бозе-частицами, а те, которые интерферируют с отрицательным знаком, именуются ферми-частицами. Ферми-частицы — это электрон, мюон, оба нейтрино, нуклоны и барионы. Стало быть, амплитуда рассеяния тождественных частиц имеет вид для бозе-частиц:
(Амплитуда процесса)+(Амплитуда обмена); (2.1) для ферми-частиц:
(Амплитуда процесса)-(Амплитуда обмена). (2.2)
Для частиц со спином (скажем, электронов) возникает добавочное усложнение. Нужно указывать не только местоположение частиц, но и направление их спинов. Только в том случае, когда частицы идентичны и их спиновые состояния тоже идентичны, только тогда при обмене частицами амплитуды интерферируют. А если вас интересует рассеяние неполяризованных пучков, являющихся смесью различных спиновых состояний, то нужны еще выкладки и сверх этого.
Интересная проблема возникает при наличии двух или больше тесно связанных частиц. К примеру, в a-частице сидят четыре частицы: два нейтрона и два протона. И когда рассеиваются две a-частицы, может представиться несколько возможностей. Может случиться, что при рассеянии обнаружится конечная амплитуда того, что один из нейтронов перескочит от одной a-частицы к другой, а нейтрон из другой a-частицы перейдет к первой, так что две a-частицы после рассеяния оказываются не первоначальными частицами — произошел обмен парой нейтронов (фиг. 2.2).